1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkMatrixOffsetTransformBase_h
#define itkMatrixOffsetTransformBase_h
#include "itkMacro.h"
#include "itkMatrix.h"
#include "itkTransform.h"
#include <iostream>
namespace itk
{
/* MatrixOrthogonalityTolerance is a utility to
* allow setting the tolerance limits used for
* checking if a matrix meet the orthogonality
* constraints of being a rigid rotation matrix.
* The tolerance needs to be different for
* matrices of type float vs. double.
*/
template <typename T>
class MatrixOrthogonalityTolerance;
template <>
class ITK_TEMPLATE_EXPORT MatrixOrthogonalityTolerance<double>
{
public:
static double
GetTolerance()
{
return 1e-10;
}
};
template <>
class ITK_TEMPLATE_EXPORT MatrixOrthogonalityTolerance<float>
{
public:
static float
GetTolerance()
{
return 1e-5f;
}
};
/**
* \class MatrixOffsetTransformBase
* \brief Matrix and Offset transformation of a vector space (e.g. space coordinates)
*
* This class serves as a base class for transforms that can be expressed
* as a linear transformation plus a constant offset (e.g., affine, similarity
* and rigid transforms). This base class also provides the concept of
* using a center of rotation and a translation instead of an offset.
*
* As derived instances of this class are specializations of an affine
* transform, any two of these transformations may be composed and the result
* is an affine transformation. However, the order is important.
* Given two affine transformations T1 and T2, we will say that
* "precomposing T1 with T2" yields the transformation which applies
* T1 to the source, and then applies T2 to that result to obtain the
* target. Conversely, we will say that "postcomposing T1 with T2"
* yields the transformation which applies T2 to the source, and then
* applies T1 to that result to obtain the target. (Whether T1 or T2
* comes first lexicographically depends on whether you choose to
* write mappings from right-to-left or vice versa; we avoid the whole
* problem by referring to the order of application rather than the
* textual order.)
*
* \tparam TParametersValueType The type to be used for scalar numeric values. Either
* float or double.
*
* \tparam VInputDimension The number of dimensions of the input vector space.
*
* \tparam VOutputDimension The number of dimensions of the output vector space.
*
* This class provides several methods for setting the matrix and offset
* defining the transform. To support the registration framework, the
* transform parameters can also be set as an Array<TParametersValueType> of size
* (VInputDimension + 1) * VOutputDimension using method SetParameters().
* The first (VOutputDimension x VInputDimension) parameters defines the
* matrix in row-major order (where the column index varies the fastest).
* The last VOutputDimension parameters defines the translation
* in each dimensions.
*
* \ingroup ITKTransform
*/
template <typename TParametersValueType = double, unsigned int VInputDimension = 3, unsigned int VOutputDimension = 3>
class ITK_TEMPLATE_EXPORT MatrixOffsetTransformBase
: public Transform<TParametersValueType, VInputDimension, VOutputDimension>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(MatrixOffsetTransformBase);
/** Standard type alias */
using Self = MatrixOffsetTransformBase;
using Superclass = Transform<TParametersValueType, VInputDimension, VOutputDimension>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(MatrixOffsetTransformBase);
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
/** Dimension of the domain space. */
static constexpr unsigned int InputSpaceDimension = VInputDimension;
static constexpr unsigned int OutputSpaceDimension = VOutputDimension;
static constexpr unsigned int ParametersDimension = VOutputDimension * (VInputDimension + 1);
/** Parameters Type */
using typename Superclass::FixedParametersType;
using typename Superclass::FixedParametersValueType;
using typename Superclass::ParametersType;
using typename Superclass::ParametersValueType;
/** Jacobian Types */
using typename Superclass::JacobianType;
using typename Superclass::JacobianPositionType;
using typename Superclass::InverseJacobianPositionType;
/** Transform category type. */
using typename Superclass::TransformCategoryEnum;
/** Standard scalar type for this class */
using typename Superclass::ScalarType;
/** Standard vector type for this class */
using InputVectorType = Vector<TParametersValueType, Self::InputSpaceDimension>;
using OutputVectorType = Vector<TParametersValueType, Self::OutputSpaceDimension>;
using OutputVectorValueType = typename OutputVectorType::ValueType;
/** Standard covariant vector type for this class */
using InputCovariantVectorType = CovariantVector<TParametersValueType, Self::InputSpaceDimension>;
using OutputCovariantVectorType = CovariantVector<TParametersValueType, Self::OutputSpaceDimension>;
using typename Superclass::InputVectorPixelType;
using typename Superclass::OutputVectorPixelType;
/** Standard diffusion tensor type for this class */
using typename Superclass::InputDiffusionTensor3DType;
using typename Superclass::OutputDiffusionTensor3DType;
/** Standard tensor type for this class */
using typename Superclass::InputSymmetricSecondRankTensorType;
using typename Superclass::OutputSymmetricSecondRankTensorType;
using InputTensorEigenVectorType = CovariantVector<TParametersValueType, InputDiffusionTensor3DType::Dimension>;
/** Standard vnl_vector type for this class */
using InputVnlVectorType = vnl_vector_fixed<TParametersValueType, Self::InputSpaceDimension>;
using OutputVnlVectorType = vnl_vector_fixed<TParametersValueType, Self::OutputSpaceDimension>;
/** Standard coordinate point type for this class */
using InputPointType = Point<TParametersValueType, Self::InputSpaceDimension>;
using InputPointValueType = typename InputPointType::ValueType;
using OutputPointType = Point<TParametersValueType, Self::OutputSpaceDimension>;
using OutputPointValueType = typename OutputPointType::ValueType;
/** Standard matrix type for this class */
using MatrixType = Matrix<TParametersValueType, Self::OutputSpaceDimension, Self::InputSpaceDimension>;
using MatrixValueType = typename MatrixType::ValueType;
/** Standard inverse matrix type for this class */
using InverseMatrixType = Matrix<TParametersValueType, Self::InputSpaceDimension, Self::OutputSpaceDimension>;
using CenterType = InputPointType;
using OffsetType = OutputVectorType;
using OffsetValueType = typename OffsetType::ValueType;
using TranslationType = OutputVectorType;
using TranslationValueType = typename TranslationType::ValueType;
/** Base inverse transform type. This type should not be changed to the
* concrete inverse transform type or inheritance would be lost. */
using InverseTransformBaseType = typename Superclass::InverseTransformBaseType;
using InverseTransformBasePointer = typename InverseTransformBaseType::Pointer;
using InverseTransformType = MatrixOffsetTransformBase<TParametersValueType, VOutputDimension, VInputDimension>;
/** InverseTransformType must be a friend to allow the generation of a transformation
* from its inverse (function GetInverse). */
friend class MatrixOffsetTransformBase<TParametersValueType, VOutputDimension, VInputDimension>;
/** Set the transformation to an Identity
*
* This sets the matrix to identity and the Offset to null. */
virtual void
SetIdentity();
/** Indicates the category transform.
* e.g. an affine transform, or a local one, e.g. a deformation field.
*/
TransformCategoryEnum
GetTransformCategory() const override
{
return Self::TransformCategoryEnum::Linear;
}
/** Set matrix of an MatrixOffsetTransformBase
*
* This method sets the matrix of an MatrixOffsetTransformBase to a
* value specified by the user.
*
* This updates the Offset wrt to current translation
* and center. See the warning regarding offset-versus-translation
* in the documentation for SetCenter.
*
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset */
virtual void
SetMatrix(const MatrixType & matrix)
{
m_Matrix = matrix;
this->ComputeOffset();
this->ComputeMatrixParameters();
m_MatrixMTime.Modified();
this->Modified();
return;
}
/** Get matrix of an MatrixOffsetTransformBase
*
* This method returns the value of the matrix of the
* MatrixOffsetTransformBase.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset */
virtual const MatrixType &
GetMatrix() const
{
return m_Matrix;
}
/** Set offset (origin) of an MatrixOffset TransformBase.
*
* This method sets the offset of an MatrixOffsetTransformBase to a
* value specified by the user.
* This updates Translation wrt current center. See the warning regarding
* offset-versus-translation in the documentation for SetCenter.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset */
void
SetOffset(const OutputVectorType & offset)
{
m_Offset = offset;
this->ComputeTranslation();
this->Modified();
return;
}
/** Get offset of an MatrixOffsetTransformBase
*
* This method returns the offset value of the MatrixOffsetTransformBase.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset */
const OutputVectorType &
GetOffset() const
{
return m_Offset;
}
/** Set center of rotation of an MatrixOffsetTransformBase
*
* This method sets the center of rotation of an MatrixOffsetTransformBase
* to a fixed point - for most transforms derived from this class,
* this point is not a "parameter" of the transform - the exception is that
* "centered" transforms have center as a parameter during optimization.
*
* This method updates offset wrt to current translation and matrix.
* That is, changing the center changes the transform!
*
* WARNING: When using the Center, we strongly recommend only changing the
* matrix and translation to define a transform. Changing a transform's
* center, changes the mapping between spaces - specifically, translation is
* not changed with respect to that new center, and so the offset is updated
* to * maintain the consistency with translation. If a center is not used,
* or is set before the matrix and the offset, then it is safe to change the
* offset directly.
* As a rule of thumb, if you wish to set the center explicitly, set
* before Offset computations are done.
*
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset */
void
SetCenter(const InputPointType & center)
{
m_Center = center;
this->ComputeOffset();
this->Modified();
return;
}
/** Get center of rotation of the MatrixOffsetTransformBase
*
* This method returns the point used as the fixed
* center of rotation for the MatrixOffsetTransformBase.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset */
const InputPointType &
GetCenter() const
{
return m_Center;
}
/** Set translation of an MatrixOffsetTransformBase
*
* This method sets the translation of an MatrixOffsetTransformBase.
* This updates Offset to reflect current translation.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset */
void
SetTranslation(const OutputVectorType & translation)
{
m_Translation = translation;
this->ComputeOffset();
this->Modified();
return;
}
/** Get translation component of the MatrixOffsetTransformBase
*
* This method returns the translation used after rotation
* about the center point.
* To define an affine transform, you must set the matrix,
* center, and translation OR the matrix and offset */
const OutputVectorType &
GetTranslation() const
{
return m_Translation;
}
/** Set the transformation from a container of parameters.
* The first (VOutputDimension x VInputDimension) parameters define the
* matrix and the last VOutputDimension parameters the translation.
* Offset is updated based on current center. */
void
SetParameters(const ParametersType & parameters) override;
/** Get the Transformation Parameters. */
const ParametersType &
GetParameters() const override;
/** Set the fixed parameters and update internal transformation. */
void
SetFixedParameters(const FixedParametersType &) override;
/** Get the Fixed Parameters. */
const FixedParametersType &
GetFixedParameters() const override;
/** Compose with another MatrixOffsetTransformBase
*
* This method composes self with another MatrixOffsetTransformBase of the
* same dimension, modifying self to be the composition of self
* and other. If the argument pre is true, then other is
* precomposed with self; that is, the resulting transformation
* consists of first applying other to the source, followed by
* self. If pre is false or omitted, then other is post-composed
* with self; that is the resulting transformation consists of
* first applying self to the source, followed by other.
* This updates the Translation based on current center. */
void
Compose(const Self * other, bool pre = false);
/** Transform by an affine transformation
*
* This method applies the affine transform given by self to a
* given point or vector, returning the transformed point or
* vector. The TransformPoint method transforms its argument as
* an affine point, whereas the TransformVector method transforms
* its argument as a vector. */
OutputPointType
TransformPoint(const InputPointType & point) const override;
using Superclass::TransformVector;
OutputVectorType
TransformVector(const InputVectorType & vect) const override;
OutputVnlVectorType
TransformVector(const InputVnlVectorType & vect) const override;
OutputVectorPixelType
TransformVector(const InputVectorPixelType & vect) const override;
using Superclass::TransformCovariantVector;
OutputCovariantVectorType
TransformCovariantVector(const InputCovariantVectorType & vec) const override;
OutputVectorPixelType
TransformCovariantVector(const InputVectorPixelType & vect) const override;
using Superclass::TransformDiffusionTensor3D;
OutputDiffusionTensor3DType
TransformDiffusionTensor3D(const InputDiffusionTensor3DType & tensor) const override;
OutputVectorPixelType
TransformDiffusionTensor3D(const InputVectorPixelType & tensor) const override;
using Superclass::TransformSymmetricSecondRankTensor;
OutputSymmetricSecondRankTensorType
TransformSymmetricSecondRankTensor(const InputSymmetricSecondRankTensorType & inputTensor) const override;
OutputVectorPixelType
TransformSymmetricSecondRankTensor(const InputVectorPixelType & inputTensor) const override;
/** Compute the Jacobian of the transformation
*
* This method computes the Jacobian matrix of the transformation.
* given point or vector, returning the transformed point or
* vector. The rank of the Jacobian will also indicate if the transform
* is invertible at this point.
* Get local Jacobian for the given point
* \c j will sized properly as needed.
*/
void
ComputeJacobianWithRespectToParameters(const InputPointType & p, JacobianType & jacobian) const override;
/** Get the jacobian with respect to position. This simply returns
* the current Matrix. jac will be resized as needed, but it's
* more efficient if it's already properly sized. */
void
ComputeJacobianWithRespectToPosition(const InputPointType & x, JacobianPositionType & jac) const override;
using Superclass::ComputeJacobianWithRespectToPosition;
/** Get the jacobian with respect to position. This simply returns
* the inverse of the current Matrix. jac will be resized as needed, but it's
* more efficient if it's already properly sized. */
void
ComputeInverseJacobianWithRespectToPosition(const InputPointType & x,
InverseJacobianPositionType & jac) const override;
using Superclass::ComputeInverseJacobianWithRespectToPosition;
/** Create inverse of an affine transformation
*
* This populates the parameters an affine transform such that
* the transform is the inverse of self. If self is not invertible,
* an exception is thrown.
* Note that by default the inverse transform is centered at
* the origin. If you need to compute the inverse centered at a point, p,
*
\code
transform2->SetCenter( p );
transform1->GetInverse( transform2 );
\endcode
*
* transform2 will now contain the inverse of transform1 and will
* with its center set to p. Flipping the two statements will produce an
* incorrect transform.
*
*/
bool
GetInverse(InverseTransformType * inverse) const;
/** Return an inverse of this transform. */
InverseTransformBasePointer
GetInverseTransform() const override;
/** Indicates that this transform is linear. That is, given two
* points P and Q, and scalar coefficients a and b, then
*
* T( a*P + b*Q ) = a * T(P) + b * T(Q)
*/
bool
IsLinear() const override
{
return true;
}
protected:
/** \deprecated Use GetInverse for public API instead.
* Method will eventually be made a protected member function */
const InverseMatrixType &
GetInverseMatrix() const;
protected:
/** Construct an MatrixOffsetTransformBase object
*
* This method constructs a new MatrixOffsetTransformBase object and
* initializes the matrix and offset parts of the transformation
* to values specified by the caller. If the arguments are
* omitted, then the MatrixOffsetTransformBase is initialized to an identity
* transformation in the appropriate number of dimensions. */
MatrixOffsetTransformBase(const MatrixType & matrix, const OutputVectorType & offset);
explicit MatrixOffsetTransformBase(unsigned int paramDims = ParametersDimension);
/** Destroy an MatrixOffsetTransformBase object */
~MatrixOffsetTransformBase() override = default;
/** Print contents of an MatrixOffsetTransformBase */
void
PrintSelf(std::ostream & os, Indent indent) const override;
const InverseMatrixType &
GetVarInverseMatrix() const
{
return m_InverseMatrix;
}
void
SetVarInverseMatrix(const InverseMatrixType & matrix) const
{
m_InverseMatrix = matrix;
m_InverseMatrixMTime.Modified();
}
bool
InverseMatrixIsOld() const
{
if (m_MatrixMTime != m_InverseMatrixMTime)
{
return true;
}
else
{
return false;
}
}
virtual void
ComputeMatrixParameters();
virtual void
ComputeMatrix();
void
SetVarMatrix(const MatrixType & matrix)
{
m_Matrix = matrix;
m_MatrixMTime.Modified();
}
virtual void
ComputeTranslation();
void
SetVarTranslation(const OutputVectorType & translation)
{
m_Translation = translation;
}
virtual void
ComputeOffset();
void
SetVarOffset(const OutputVectorType & offset)
{
m_Offset = offset;
}
void
SetVarCenter(const InputPointType & center)
{
m_Center = center;
}
itkGetConstMacro(Singular, bool);
private:
MatrixType m_Matrix{ MatrixType::GetIdentity() }; // Matrix of the transformation
OutputVectorType m_Offset{}; // Offset of the transformation
mutable InverseMatrixType m_InverseMatrix{ InverseMatrixType::GetIdentity() }; // Inverse of the matrix
mutable bool m_Singular{ false }; // Is m_Inverse singular?
InputPointType m_Center{};
OutputVectorType m_Translation{};
/** To avoid recomputation of the inverse if not needed */
TimeStamp m_MatrixMTime{};
mutable TimeStamp m_InverseMatrixMTime{};
}; // class MatrixOffsetTransformBase
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkMatrixOffsetTransformBase.hxx"
#endif
#endif /* itkMatrixOffsetTransformBase_h */
|