1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkRigid3DTransform_h
#define itkRigid3DTransform_h
#include <iostream>
#include "itkMatrixOffsetTransformBase.h"
#include "itkVersor.h"
namespace itk
{
/** \class Rigid3DTransform
* \brief Rigid3DTransform of a vector space (e.g. space coordinates)
*
* This transform applies a rotation and translation in 3D space.
* The transform is specified as a rotation matrix around a arbitrary center
* and is followed by a translation.
*
* The parameters for this transform can be set either using individual Set
* methods or in serialized form using SetParameters() and SetFixedParameters().
*
* The serialization of the optimizable parameters is an array of 12 elements.
* The first 9 parameters represents the rotation matrix in row-major order
* (where the column index varies the fastest). The last 3 parameters defines
* the translation in each dimension.
*
* The serialization of the fixed parameters is an array of 3 elements defining
* the center of rotation in each dimension.
*
* The Rigid3DTransform is intended to be a base class that
* defines a consistent family of transform types that respect
* rigid transformations. Only classes that derive from Rigid3DTransform
* should be used.
*
* \sa Euler3DTransform
* \sa QuaternionRigidTransform
* \sa VersorTransform
*
* \ingroup ITKTransform
*/
template <typename TParametersValueType = double>
class ITK_TEMPLATE_EXPORT Rigid3DTransform : public MatrixOffsetTransformBase<TParametersValueType, 3, 3>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(Rigid3DTransform);
/** Standard class type aliases. */
using Self = Rigid3DTransform;
using Superclass = MatrixOffsetTransformBase<TParametersValueType, 3, 3>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Run-time type information (and related methods). */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(Rigid3DTransform);
/** Dimension of the space. */
static constexpr unsigned int SpaceDimension = 3;
static constexpr unsigned int InputSpaceDimension = 3;
static constexpr unsigned int OutputSpaceDimension = 3;
static constexpr unsigned int ParametersDimension = 12;
using typename Superclass::ParametersType;
using typename Superclass::ParametersValueType;
using typename Superclass::FixedParametersType;
using typename Superclass::FixedParametersValueType;
using typename Superclass::JacobianType;
using typename Superclass::JacobianPositionType;
using typename Superclass::InverseJacobianPositionType;
using typename Superclass::ScalarType;
using typename Superclass::InputVectorType;
using typename Superclass::OutputVectorType;
using typename Superclass::OutputVectorValueType;
using typename Superclass::InputCovariantVectorType;
using typename Superclass::OutputCovariantVectorType;
using typename Superclass::InputVnlVectorType;
using typename Superclass::OutputVnlVectorType;
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using typename Superclass::MatrixType;
using typename Superclass::InverseMatrixType;
using typename Superclass::MatrixValueType;
using typename Superclass::CenterType;
using typename Superclass::TranslationType;
using typename Superclass::OffsetType;
/** Base inverse transform type. This type should not be changed to the
* concrete inverse transform type or inheritance would be lost. */
using InverseTransformBaseType = typename Superclass::InverseTransformBaseType;
using InverseTransformBasePointer = typename InverseTransformBaseType::Pointer;
/** Set the transformation from a container of parameters
* This is typically used by optimizers.
* There are 12 parameters. The first 9 represents the rotation
* matrix is row-major order and the last 3 represents the translation.
*
* \warning The rotation matrix must be orthogonal to within a specified tolerance,
* else an exception is thrown.
*
* \sa Transform::SetParameters()
* \sa Transform::SetFixedParameters() */
void
SetParameters(const ParametersType & parameters) override;
/** Directly set the rotation matrix of the transform.
* \warning The input matrix must be orthogonal to within a specified tolerance,
* else an exception is thrown.
*
* \sa MatrixOffsetTransformBase::SetMatrix() */
void
SetMatrix(const MatrixType & matrix) override;
/** Directly set the rotation matrix of the transform.
* \warning The input matrix must be orthogonal to within the specified tolerance,
* else an exception is thrown.
*
* \sa MatrixOffsetTransformBase::SetMatrix() */
virtual void
SetMatrix(const MatrixType & matrix, const TParametersValueType tolerance);
/**
* Compose the transformation with a translation
*
* This method modifies self to include a translation of the
* origin. The translation is precomposed with self if pre is
* true, and postcomposed otherwise.
*/
void
Translate(const OffsetType & offset, bool pre = false);
/**
* Utility function to test if a matrix is orthogonal within a specified
* tolerance
*/
bool
MatrixIsOrthogonal(
const MatrixType & matrix,
const TParametersValueType tolerance = MatrixOrthogonalityTolerance<TParametersValueType>::GetTolerance());
protected:
Rigid3DTransform(const MatrixType & matrix, const OutputVectorType & offset);
Rigid3DTransform(unsigned int paramDim);
Rigid3DTransform();
~Rigid3DTransform() override = default;
/**
* Print contents of an Rigid3DTransform
*/
void
PrintSelf(std::ostream & os, Indent indent) const override;
}; // class Rigid3DTransform
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkRigid3DTransform.hxx"
#endif
#endif /* itkRigid3DTransform_h */
|