File: itkScaleTransform.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (231 lines) | stat: -rw-r--r-- 8,494 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkScaleTransform_h
#define itkScaleTransform_h

#include "itkMatrixOffsetTransformBase.h"
#include "itkMacro.h"
#include "itkMatrix.h"

namespace itk
{
/** \class ScaleTransform
 * \brief Scale transformation of a vector space (e.g. space coordinates)
 *
 * The same functionality could be obtained by using the Affine transform,
 * but with a large difference in performance since the affine transform will
 * use a matrix multiplication using a diagonal matrix.
 *
 * The ND Parameters represent the scale in each dimension.
 * The ND FixedParameters represent the fixed point (i.e. center point) from
 * which scaling originates.
 *
 * \ingroup ITKTransform
 *
 * \sphinx
 * \sphinxexample{Core/Transform/ScaleAnImage,Scale An Image}
 * \endsphinx
 */
template <typename TParametersValueType = float, unsigned int VDimension = 3>
class ITK_TEMPLATE_EXPORT ScaleTransform
  : public MatrixOffsetTransformBase<TParametersValueType, VDimension, VDimension>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ScaleTransform);

  /** Standard class type aliases.   */
  using Self = ScaleTransform;
  using Superclass = MatrixOffsetTransformBase<TParametersValueType, VDimension, VDimension>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** New macro for creation of through a smart pointer. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ScaleTransform);

  /** Dimension of the domain space. */
  static constexpr unsigned int SpaceDimension = VDimension;
  static constexpr unsigned int ParametersDimension = VDimension;

  /** Scalar type. */
  using typename Superclass::ScalarType;

  /** Parameters type. */
  using typename Superclass::FixedParametersType;
  using typename Superclass::ParametersType;

  /** Jacobian types. */
  using typename Superclass::JacobianType;
  using typename Superclass::JacobianPositionType;
  using typename Superclass::InverseJacobianPositionType;

  /** Standard vector type for this class. */
  using ScaleType = FixedArray<TParametersValueType, VDimension>;

  /** Standard vector type for this class. */
  using InputVectorType = Vector<TParametersValueType, VDimension>;
  using OutputVectorType = Vector<TParametersValueType, VDimension>;

  /** Standard covariant vector type for this class. */
  using InputCovariantVectorType = CovariantVector<TParametersValueType, VDimension>;
  using OutputCovariantVectorType = CovariantVector<TParametersValueType, VDimension>;

  /** Standard vnl_vector type for this class. */
  using InputVnlVectorType = vnl_vector_fixed<TParametersValueType, VDimension>;
  using OutputVnlVectorType = vnl_vector_fixed<TParametersValueType, VDimension>;

  /** Standard coordinate point type for this class. */
  using InputPointType = Point<TParametersValueType, VDimension>;
  using OutputPointType = Point<TParametersValueType, VDimension>;

  /** Base inverse transform type. This type should not be changed to the
   * concrete inverse transform type or inheritance would be lost.*/
  using InverseTransformBaseType = typename Superclass::InverseTransformBaseType;
  using InverseTransformBasePointer = typename InverseTransformBaseType::Pointer;

  using typename Superclass::MatrixType;

  /** Set parameters.  This method sets the parameters for the transform value
   *  specified by the user. The parameters are organized as scale[i] =
   *  parameter[i]. That means that in 3D the scale parameters for the coordinates
   *  {x,y,z} are {parameter[0], parameter[1], parameter[2]} respectively */
  void
  SetParameters(const ParametersType & parameters) override;

  /** Get the parameters that uniquely define the transform This is typically
   * used by optimizers during the process of image registration.  The parameters
   * are organized as {scale X, scale Y, scale Z } = { parameter[0],
   * parameter[1], parameter[2] } respectively */
  const ParametersType &
  GetParameters() const override;

  /** Get the Jacobian matrix. */
  void
  ComputeJacobianWithRespectToParameters(const InputPointType & p, JacobianType & j) const override;

  /** Get the jacobian with respect to position, which simply is the
   *  matrix because the transform is position-invariant.
   *  jac will be resized as needed, but it will be more efficient if
   *  it is already properly sized. */
  void
  ComputeJacobianWithRespectToPosition(const InputPointType & x, JacobianPositionType & jac) const override;
  using Superclass::ComputeJacobianWithRespectToPosition;

  /** Set the factors of an Scale Transform
   * This method sets the factors of an ScaleTransform to a
   * value specified by the user.
   * This method cannot be done with SetMacro because itk::Array has not an
   * operator== defined. The array of scales correspond in order to the factors
   * to be applied to each one of the coordinates. For example, in 3D,
   * scale[0] corresponds to X, scale[1] corresponds to Y and scale[2]
   * corresponds to Z. */
  void
  SetScale(const ScaleType & scale);

  void
  ComputeMatrix() override;

  /** Compose with another ScaleTransform. */
  void
  Compose(const Self * other, bool pre = false);

  /** Compose this transform transformation with another scaling.
   * The pre argument is irrelevant here since scale transforms are commutative,
   * pre and postcomposition are therefore equivalent. */
  void
  Scale(const ScaleType & scale, bool pre = false);

  /** Transform by a scale transformation
   * This method applies the scale transform given by self to a
   * given point or vector, returning the transformed point or
   * vector. */
  OutputPointType
  TransformPoint(const InputPointType & point) const override;

  using Superclass::TransformVector;
  OutputVectorType
  TransformVector(const InputVectorType & vect) const override;

  OutputVnlVectorType
  TransformVector(const InputVnlVectorType & vect) const override;

  using Superclass::TransformCovariantVector;
  OutputCovariantVectorType
  TransformCovariantVector(const InputCovariantVectorType & vect) const override;

  /** Back transform by a scale transformation
   * This method finds the point or vector that maps to a given
   * point or vector under the scale transformation defined by
   * self.  If no such point exists, an exception is thrown. */
  inline InputPointType
  BackTransform(const OutputPointType & point) const;

  inline InputVectorType
  BackTransform(const OutputVectorType & vect) const;

  inline InputVnlVectorType
  BackTransform(const OutputVnlVectorType & vect) const;

  inline InputCovariantVectorType
  BackTransform(const OutputCovariantVectorType & vect) const;

  /** Find inverse of a scale transformation
   * This method creates and returns a new ScaleTransform object
   * which is the inverse of self.  If self is not invertible,
   * false is returned. */
  bool
  GetInverse(Self * inverse) const;

  /** Return an inverse of this transform. */
  InverseTransformBasePointer
  GetInverseTransform() const override;

  /** Set the transformation to an Identity
   *
   * This sets all the scales to 1.0 */
  void
  SetIdentity() override;

  /** Get access to scale values */
  itkGetConstReferenceMacro(Scale, ScaleType);

protected:
  /** Construct an ScaleTransform object. */
  ScaleTransform();

  /** Destroy an ScaleTransform object. */
  ~ScaleTransform() override = default;

  /** Print contents of an ScaleTransform */
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

private:
  ScaleType m_Scale{}; // Scales of the transformation

}; // class ScaleTransform

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkScaleTransform.hxx"
#endif

#endif /* itkScaleTransform_h */