1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkScaleTransform_h
#define itkScaleTransform_h
#include "itkMatrixOffsetTransformBase.h"
#include "itkMacro.h"
#include "itkMatrix.h"
namespace itk
{
/** \class ScaleTransform
* \brief Scale transformation of a vector space (e.g. space coordinates)
*
* The same functionality could be obtained by using the Affine transform,
* but with a large difference in performance since the affine transform will
* use a matrix multiplication using a diagonal matrix.
*
* The ND Parameters represent the scale in each dimension.
* The ND FixedParameters represent the fixed point (i.e. center point) from
* which scaling originates.
*
* \ingroup ITKTransform
*
* \sphinx
* \sphinxexample{Core/Transform/ScaleAnImage,Scale An Image}
* \endsphinx
*/
template <typename TParametersValueType = float, unsigned int VDimension = 3>
class ITK_TEMPLATE_EXPORT ScaleTransform
: public MatrixOffsetTransformBase<TParametersValueType, VDimension, VDimension>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ScaleTransform);
/** Standard class type aliases. */
using Self = ScaleTransform;
using Superclass = MatrixOffsetTransformBase<TParametersValueType, VDimension, VDimension>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** New macro for creation of through a smart pointer. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ScaleTransform);
/** Dimension of the domain space. */
static constexpr unsigned int SpaceDimension = VDimension;
static constexpr unsigned int ParametersDimension = VDimension;
/** Scalar type. */
using typename Superclass::ScalarType;
/** Parameters type. */
using typename Superclass::FixedParametersType;
using typename Superclass::ParametersType;
/** Jacobian types. */
using typename Superclass::JacobianType;
using typename Superclass::JacobianPositionType;
using typename Superclass::InverseJacobianPositionType;
/** Standard vector type for this class. */
using ScaleType = FixedArray<TParametersValueType, VDimension>;
/** Standard vector type for this class. */
using InputVectorType = Vector<TParametersValueType, VDimension>;
using OutputVectorType = Vector<TParametersValueType, VDimension>;
/** Standard covariant vector type for this class. */
using InputCovariantVectorType = CovariantVector<TParametersValueType, VDimension>;
using OutputCovariantVectorType = CovariantVector<TParametersValueType, VDimension>;
/** Standard vnl_vector type for this class. */
using InputVnlVectorType = vnl_vector_fixed<TParametersValueType, VDimension>;
using OutputVnlVectorType = vnl_vector_fixed<TParametersValueType, VDimension>;
/** Standard coordinate point type for this class. */
using InputPointType = Point<TParametersValueType, VDimension>;
using OutputPointType = Point<TParametersValueType, VDimension>;
/** Base inverse transform type. This type should not be changed to the
* concrete inverse transform type or inheritance would be lost.*/
using InverseTransformBaseType = typename Superclass::InverseTransformBaseType;
using InverseTransformBasePointer = typename InverseTransformBaseType::Pointer;
using typename Superclass::MatrixType;
/** Set parameters. This method sets the parameters for the transform value
* specified by the user. The parameters are organized as scale[i] =
* parameter[i]. That means that in 3D the scale parameters for the coordinates
* {x,y,z} are {parameter[0], parameter[1], parameter[2]} respectively */
void
SetParameters(const ParametersType & parameters) override;
/** Get the parameters that uniquely define the transform This is typically
* used by optimizers during the process of image registration. The parameters
* are organized as {scale X, scale Y, scale Z } = { parameter[0],
* parameter[1], parameter[2] } respectively */
const ParametersType &
GetParameters() const override;
/** Get the Jacobian matrix. */
void
ComputeJacobianWithRespectToParameters(const InputPointType & p, JacobianType & j) const override;
/** Get the jacobian with respect to position, which simply is the
* matrix because the transform is position-invariant.
* jac will be resized as needed, but it will be more efficient if
* it is already properly sized. */
void
ComputeJacobianWithRespectToPosition(const InputPointType & x, JacobianPositionType & jac) const override;
using Superclass::ComputeJacobianWithRespectToPosition;
/** Set the factors of an Scale Transform
* This method sets the factors of an ScaleTransform to a
* value specified by the user.
* This method cannot be done with SetMacro because itk::Array has not an
* operator== defined. The array of scales correspond in order to the factors
* to be applied to each one of the coordinates. For example, in 3D,
* scale[0] corresponds to X, scale[1] corresponds to Y and scale[2]
* corresponds to Z. */
void
SetScale(const ScaleType & scale);
void
ComputeMatrix() override;
/** Compose with another ScaleTransform. */
void
Compose(const Self * other, bool pre = false);
/** Compose this transform transformation with another scaling.
* The pre argument is irrelevant here since scale transforms are commutative,
* pre and postcomposition are therefore equivalent. */
void
Scale(const ScaleType & scale, bool pre = false);
/** Transform by a scale transformation
* This method applies the scale transform given by self to a
* given point or vector, returning the transformed point or
* vector. */
OutputPointType
TransformPoint(const InputPointType & point) const override;
using Superclass::TransformVector;
OutputVectorType
TransformVector(const InputVectorType & vect) const override;
OutputVnlVectorType
TransformVector(const InputVnlVectorType & vect) const override;
using Superclass::TransformCovariantVector;
OutputCovariantVectorType
TransformCovariantVector(const InputCovariantVectorType & vect) const override;
/** Back transform by a scale transformation
* This method finds the point or vector that maps to a given
* point or vector under the scale transformation defined by
* self. If no such point exists, an exception is thrown. */
inline InputPointType
BackTransform(const OutputPointType & point) const;
inline InputVectorType
BackTransform(const OutputVectorType & vect) const;
inline InputVnlVectorType
BackTransform(const OutputVnlVectorType & vect) const;
inline InputCovariantVectorType
BackTransform(const OutputCovariantVectorType & vect) const;
/** Find inverse of a scale transformation
* This method creates and returns a new ScaleTransform object
* which is the inverse of self. If self is not invertible,
* false is returned. */
bool
GetInverse(Self * inverse) const;
/** Return an inverse of this transform. */
InverseTransformBasePointer
GetInverseTransform() const override;
/** Set the transformation to an Identity
*
* This sets all the scales to 1.0 */
void
SetIdentity() override;
/** Get access to scale values */
itkGetConstReferenceMacro(Scale, ScaleType);
protected:
/** Construct an ScaleTransform object. */
ScaleTransform();
/** Destroy an ScaleTransform object. */
~ScaleTransform() override = default;
/** Print contents of an ScaleTransform */
void
PrintSelf(std::ostream & os, Indent indent) const override;
private:
ScaleType m_Scale{}; // Scales of the transformation
}; // class ScaleTransform
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkScaleTransform.hxx"
#endif
#endif /* itkScaleTransform_h */
|