1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkTranslationTransform_h
#define itkTranslationTransform_h
#include "itkTransform.h"
#include "itkMacro.h"
#include "itkMatrix.h"
namespace itk
{
/** \class TranslationTransform
* \brief Translation transformation of a vector space (e.g. space coordinates)
*
* The same functionality could be obtained by using the Affine transform,
* but with a large difference in performance.
*
* \ingroup ITKTransform
*
* \sphinx
* \sphinxexample{Core/Transform/TranslateAVectorImage,Translate Vector Image}
* \sphinxexample{Registration/Common/GlobalRegistrationOfTwoImages,Global Registration Of Two Images}
* \sphinxexample{Registration/Common/MutualInformation,Mutual Information}
* \endsphinx
*/
template <typename TParametersValueType = double, unsigned int VDimension = 3>
class ITK_TEMPLATE_EXPORT TranslationTransform : public Transform<TParametersValueType, VDimension, VDimension>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(TranslationTransform);
/** Standard class type aliases. */
using Self = TranslationTransform;
using Superclass = Transform<TParametersValueType, VDimension, VDimension>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** New macro for creation of through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(TranslationTransform);
/** Dimension of the domain space. */
static constexpr unsigned int SpaceDimension = VDimension;
static constexpr unsigned int ParametersDimension = VDimension;
/** Standard scalar type for this class. */
using typename Superclass::ScalarType;
/** Standard parameters container. */
using typename Superclass::FixedParametersType;
using typename Superclass::ParametersType;
/** Standard Jacobian containers. */
using typename Superclass::JacobianType;
using typename Superclass::JacobianPositionType;
using typename Superclass::InverseJacobianPositionType;
/** The number of parameters defining this transform. */
using typename Superclass::NumberOfParametersType;
/** Standard vector type for this class. */
using InputVectorType = Vector<TParametersValueType, VDimension>;
using OutputVectorType = Vector<TParametersValueType, VDimension>;
/** Standard covariant vector type for this class. */
using InputCovariantVectorType = CovariantVector<TParametersValueType, VDimension>;
using OutputCovariantVectorType = CovariantVector<TParametersValueType, VDimension>;
/** Standard vnl_vector type for this class. */
using InputVnlVectorType = vnl_vector_fixed<TParametersValueType, VDimension>;
using OutputVnlVectorType = vnl_vector_fixed<TParametersValueType, VDimension>;
/** Standard coordinate point type for this class. */
using InputPointType = Point<TParametersValueType, VDimension>;
using OutputPointType = Point<TParametersValueType, VDimension>;
/** Base inverse transform type. This type should not be changed to the
* concrete inverse transform type or inheritance would be lost.*/
using InverseTransformBaseType = typename Superclass::InverseTransformBaseType;
using InverseTransformBasePointer = typename InverseTransformBaseType::Pointer;
/** Transform category type. */
using typename Superclass::TransformCategoryEnum;
/** This method returns the value of the offset of the
* TranslationTransform. */
const OutputVectorType &
GetOffset() const
{
return m_Offset;
}
/** This method sets the parameters for the transform
* value specified by the user. */
void
SetParameters(const ParametersType & parameters) override;
/** Get the Transformation Parameters. */
const ParametersType &
GetParameters() const override;
/** Set offset of an Translation Transform.
* This method sets the offset of an TranslationTransform to a
* value specified by the user. */
void
SetOffset(const OutputVectorType & offset)
{
m_Offset = offset;
return;
}
/** Compose with another TranslationTransform. */
void
Compose(const Self * other, bool pre = false);
/** Compose affine transformation with a translation.
* This method modifies self to include a translation of the
* origin. The translation is precomposed with self if pre is
* true, and postcomposed otherwise. */
void
Translate(const OutputVectorType & offset, bool pre = false);
/** Transform by an affine transformation.
* This method applies the affine transform given by self to a
* given point or vector, returning the transformed point or
* vector. */
OutputPointType
TransformPoint(const InputPointType & point) const override;
using Superclass::TransformVector;
OutputVectorType
TransformVector(const InputVectorType & vect) const override;
OutputVnlVectorType
TransformVector(const InputVnlVectorType & vect) const override;
using Superclass::TransformCovariantVector;
OutputCovariantVectorType
TransformCovariantVector(const InputCovariantVectorType & vect) const override;
/** This method finds the point or vector that maps to a given
* point or vector under the affine transformation defined by
* self. If no such point exists, an exception is thrown. */
inline InputPointType
BackTransform(const OutputPointType & point) const;
inline InputVectorType
BackTransform(const OutputVectorType & vect) const;
inline InputVnlVectorType
BackTransform(const OutputVnlVectorType & vect) const;
inline InputCovariantVectorType
BackTransform(const OutputCovariantVectorType & vect) const;
/** Find inverse of an affine transformation.
* This method creates and returns a new TranslationTransform object
* which is the inverse of self. If self is not invertible,
* false is returned. */
bool
GetInverse(Self * inverse) const;
/** Return an inverse of this transform. */
InverseTransformBasePointer
GetInverseTransform() const override;
/** Compute the Jacobian Matrix of the transformation at one point */
void
ComputeJacobianWithRespectToParameters(const InputPointType & point, JacobianType & jacobian) const override;
/** Get the jacobian with respect to position, which simply is an identity
* jacobian because the transform is position-invariant.
* jac will be resized as needed, but it will be more efficient if
* it is already properly sized. */
void
ComputeJacobianWithRespectToPosition(const InputPointType & x, JacobianPositionType & jac) const override;
using Superclass::ComputeJacobianWithRespectToPosition;
/** Set the parameters to the IdentityTransform */
void
SetIdentity();
/** Return the number of parameters that completely define the Transform */
NumberOfParametersType
GetNumberOfParameters() const override
{
return VDimension;
}
/** Indicates that this transform is linear. That is, given two
* points P and Q, and scalar coefficients a and b, then
*
* \f[ T( a*P + b*Q ) = a * T(P) + b * T(Q) \f]
*/
bool
IsLinear() const override
{
return true;
}
/** Indicates the category transform.
* e.g. an affine transform, or a local one, e.g. a deformation field.
*/
TransformCategoryEnum
GetTransformCategory() const override
{
return Self::TransformCategoryEnum::Linear;
}
/** Set the fixed parameters and update internal transformation.
* The Translation Transform does not require fixed parameters,
* therefore the implementation of this method is a null operation. */
void
SetFixedParameters(const FixedParametersType &) override
{}
/** Get the Fixed Parameters. The TranslationTransform does not
* require Fixed parameters, therefore this method returns an
* parameters array of size zero. */
const FixedParametersType &
GetFixedParameters() const override
{
this->m_FixedParameters.SetSize(0);
return this->m_FixedParameters;
}
protected:
TranslationTransform();
~TranslationTransform() override = default;
/** Print contents of an TranslationTransform. */
void
PrintSelf(std::ostream & os, Indent indent) const override;
private:
JacobianType m_IdentityJacobian{};
OutputVectorType m_Offset{}; // Offset of the transformation
}; // class TranslationTransform
// Back transform a point
template <typename TParametersValueType, unsigned int VDimension>
inline auto
TranslationTransform<TParametersValueType, VDimension>::BackTransform(const OutputPointType & point) const
-> InputPointType
{
return point - m_Offset;
}
// Back transform a vector
template <typename TParametersValueType, unsigned int VDimension>
inline auto
TranslationTransform<TParametersValueType, VDimension>::BackTransform(const OutputVectorType & vect) const
-> InputVectorType
{
return vect;
}
// Back transform a vnl_vector
template <typename TParametersValueType, unsigned int VDimension>
inline auto
TranslationTransform<TParametersValueType, VDimension>::BackTransform(const OutputVnlVectorType & vect) const
-> InputVnlVectorType
{
return vect;
}
// Back Transform a CovariantVector
template <typename TParametersValueType, unsigned int VDimension>
inline auto
TranslationTransform<TParametersValueType, VDimension>::BackTransform(const OutputCovariantVectorType & vect) const
-> InputCovariantVectorType
{
return vect;
}
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkTranslationTransform.hxx"
#endif
#endif /* itkTranslationTransform_h */
|