1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkv3Rigid3DTransform_h
#define itkv3Rigid3DTransform_h
#include <iostream>
#include "itkRigid3DTransform.h"
#include "itkVersor.h"
namespace itk
{
namespace v3
{
/** \class Rigid3DTransform
* \brief ITK3.x compatible Rigid3DTransform of a vector space (e.g. space coordinates)
*
* NOTE: In ITK4, the itkNewMacro() was removed from
* itk::Rigid3DTransform. This class, itkv3::Rigid3DTransform provides
* the ITK3.x functionality. The purpose of the class is provide ITKv3
* functionality with backward compatibility after ITK 5.0 removal of
* ITKV3_COMPATIBILITY support.
*
* Even though the name Rigid3DTransform is conceptually closer to
* what a user may expect, the VersorRigid3DTransform is often a
* much better transform to use during optimization procedures from
* both a speed perspective (lower dimensional parameter space), and
* stability standpoint (versors do not suffer from rotational gimble
* lock).
*
* This transform applies a rotation and translation in 3D space.
* The transform is specified as a rotation matrix around a arbitrary center
* and is followed by a translation.
*
* The parameters for this transform can be set either using individual Set
* methods or in serialized form using SetParameters() and SetFixedParameters().
*
* The serialization of the optimizable parameters is an array of 12 elements.
* The first 9 parameters represents the rotation matrix in row-major order
* (where the column index varies the fastest). The last 3 parameters defines
* the translation in each dimension.
*
* The serialization of the fixed parameters is an array of 3 elements defining
* the center of rotation in each dimension.
*
* \ingroup ITKTransform
*/
template <typename TParametersValueType = double>
class ITK_TEMPLATE_EXPORT Rigid3DTransform : public itk::Rigid3DTransform<TParametersValueType>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(Rigid3DTransform);
/** Standard class type aliases. */
using Self = Rigid3DTransform;
using Superclass = itk::Rigid3DTransform<TParametersValueType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(Rigid3DTransform);
/** New macro for creation of through a Smart Pointer */
itkNewMacro(Self);
/** Dimension of the space. */
static constexpr unsigned int SpaceDimension = 3;
static constexpr unsigned int InputSpaceDimension = 3;
static constexpr unsigned int OutputSpaceDimension = 3;
static constexpr unsigned int ParametersDimension = 12;
using typename Superclass::ParametersType;
using typename Superclass::ParametersValueType;
using typename Superclass::FixedParametersType;
using typename Superclass::FixedParametersValueType;
using typename Superclass::JacobianType;
using typename Superclass::JacobianPositionType;
using typename Superclass::InverseJacobianPositionType;
using typename Superclass::ScalarType;
using typename Superclass::InputVectorType;
using typename Superclass::OutputVectorType;
using typename Superclass::OutputVectorValueType;
using typename Superclass::InputCovariantVectorType;
using typename Superclass::OutputCovariantVectorType;
using typename Superclass::InputVnlVectorType;
using typename Superclass::OutputVnlVectorType;
using typename Superclass::InputPointType;
using typename Superclass::OutputPointType;
using typename Superclass::MatrixType;
using typename Superclass::InverseMatrixType;
using typename Superclass::MatrixValueType;
using typename Superclass::CenterType;
using typename Superclass::TranslationType;
using typename Superclass::OffsetType;
/** Base inverse transform type. This type should not be changed to the
* concrete inverse transform type or inheritance would be lost. */
using InverseTransformBaseType = typename Superclass::InverseTransformBaseType;
using InverseTransformBasePointer = typename InverseTransformBaseType::Pointer;
/** Get an inverse of this transform. */
bool
GetInverse(Self * inverse) const
{
return this->Superclass::GetInverse(inverse);
}
/** Return an inverse of this transform. */
InverseTransformBasePointer
GetInverseTransform() const override
{
return Superclass::InvertTransform(*this);
}
protected:
Rigid3DTransform() = default;
}; // class Rigid3DTransform
} // namespace v3
} // namespace itk
#if !defined(ITK_LEGACY_REMOVE)
# define itkv3 itk::v3
#endif
#endif /* itkv3Rigid3DTransform_h */
|