1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkAzimuthElevationToCartesianTransform.h"
#include "itkTestingMacros.h"
template <typename TPoint>
void
PrintPoint(const TPoint & p)
{
for (unsigned int i = 0; i < TPoint::PointDimension; ++i)
{
std::cout << p[i] << ", ";
}
std::cout << std::endl;
}
int
itkAzimuthElevationToCartesianTransformTest(int argc, char * argv[])
{
if (argc != 7)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv)
<< " maxAzimuth maxElevation radiusSampleSize azimuthAngularSeparation elevationAngularSeparation "
"firstSampleDistance"
<< std::endl;
return EXIT_FAILURE;
}
using CoordinateRepresentationType = double;
using PointType = itk::Point<CoordinateRepresentationType, 3>;
const CoordinateRepresentationType ACCEPTABLE_ERROR = 1E-10;
using AzimuthElevationToCartesianTransformType =
itk::AzimuthElevationToCartesianTransform<CoordinateRepresentationType>;
auto transform = AzimuthElevationToCartesianTransformType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(transform, AzimuthElevationToCartesianTransform, AffineTransform);
auto maxAzimuth = static_cast<long>(std::stoi(argv[1]));
transform->SetMaxAzimuth(maxAzimuth);
ITK_TEST_SET_GET_VALUE(maxAzimuth, transform->GetMaxAzimuth());
auto maxElevation = static_cast<long>(std::stoi(argv[2]));
transform->SetMaxElevation(maxElevation);
ITK_TEST_SET_GET_VALUE(maxElevation, transform->GetMaxElevation());
auto radiusSampleSize = std::stod(argv[3]);
transform->SetRadiusSampleSize(radiusSampleSize);
ITK_TEST_SET_GET_VALUE(radiusSampleSize, transform->GetRadiusSampleSize());
auto azimuthAngularSeparation = std::stod(argv[4]);
transform->SetAzimuthAngularSeparation(azimuthAngularSeparation);
ITK_TEST_SET_GET_VALUE(azimuthAngularSeparation, transform->GetAzimuthAngularSeparation());
auto elevationAngularSeparation = std::stod(argv[5]);
transform->SetFirstSampleDistance(elevationAngularSeparation);
ITK_TEST_SET_GET_VALUE(elevationAngularSeparation, transform->GetElevationAngularSeparation());
auto firstSampleDistance = std::stod(argv[6]);
transform->SetFirstSampleDistance(firstSampleDistance);
ITK_TEST_SET_GET_VALUE(firstSampleDistance, transform->GetFirstSampleDistance());
transform->SetAzimuthElevationToCartesianParameters(1.0, 5.0, 45, 45);
// test a bunch of points in all quadrants and those that could create exceptions
PointType q;
std::vector<PointType> p;
q[0] = 1;
q[1] = 1;
q[2] = 1;
p.push_back(q);
q[0] = 1;
q[1] = 1;
q[2] = -1;
p.push_back(q);
q[0] = 1;
q[1] = -1;
q[2] = 1;
p.push_back(q);
q[0] = 1;
q[1] = -1;
q[2] = -1;
p.push_back(q);
q[0] = -1;
q[1] = 1;
q[2] = 1;
p.push_back(q);
q[0] = -1;
q[1] = 1;
q[2] = -1;
p.push_back(q);
q[0] = -1;
q[1] = -1;
q[2] = 1;
p.push_back(q);
q[0] = -1;
q[1] = -1;
q[2] = -1;
p.push_back(q);
q[0] = -1;
q[1] = 1;
q[2] = 0;
p.push_back(q);
q[0] = 0;
q[1] = 1;
q[2] = 0;
p.push_back(q);
std::cout << "\n\n\t\t\tTransform Info:\n\n";
transform->Print(std::cout);
std::cout << "\n\n--------\n\n";
for (auto & j : p)
{
std::cout << "original values of (theta,phi,r) p = " << std::endl;
PrintPoint<PointType>(j);
transform->SetForwardAzimuthElevationToCartesian();
PointType answer = transform->TransformPoint(j);
PrintPoint<PointType>(answer);
PointType answerBackwards = transform->BackTransformPoint(answer);
PrintPoint<PointType>(answerBackwards);
transform->SetForwardCartesianToAzimuthElevation();
PointType reverseDirectionAnswer = transform->BackTransformPoint(answerBackwards);
PrintPoint<PointType>(reverseDirectionAnswer);
PointType reverseDirectionAnswerBackwards = transform->TransformPoint(reverseDirectionAnswer);
PrintPoint<PointType>(reverseDirectionAnswerBackwards);
std::cout << "\n\n--------\n\n";
bool same = true;
for (unsigned int i = 0; i < PointType::PointDimension && same; ++i)
{
same = ((itk::Math::abs(j[i] - answerBackwards[i]) < ACCEPTABLE_ERROR) &&
(itk::Math::abs(j[i] - reverseDirectionAnswerBackwards[i]) < ACCEPTABLE_ERROR) &&
(itk::Math::abs(answer[i] - reverseDirectionAnswer[i]) < ACCEPTABLE_ERROR));
}
if (!same)
{
std::cout << "itkAzimuthElevationToCartesianTransformTest failed" << std::endl;
return EXIT_FAILURE;
}
}
// Check if itkAzimuthElevationToCartesianTransform returns the correct
// TransformCategory.
if (transform->GetTransformCategory() !=
AzimuthElevationToCartesianTransformType::TransformCategoryEnum::UnknownTransformCategory)
{
std::cout << "itkAzimuthElevationToCartesianTransformTest failed" << std::endl;
return EXIT_FAILURE;
}
std::cout << "itkAzimuthElevationToCartesianTransformTest passed" << std::endl;
return EXIT_SUCCESS;
}
|