1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkRigid3DPerspectiveTransform.h"
#include "itkTestingMacros.h"
int
itkRigid3DPerspectiveTransformTest(int, char *[])
{
using TransformType = itk::Rigid3DPerspectiveTransform<double>;
const double epsilon = 1e-10;
constexpr unsigned int N = 3;
constexpr double focal = 100.0;
bool Ok = true;
// Test exceptions
{
auto transform = TransformType::New();
typename TransformType::InputVectorType vector = itk::MakeVector(1.0, 4.0, 9.0);
ITK_TRY_EXPECT_EXCEPTION(transform->TransformVector(vector));
typename TransformType::InputVnlVectorType vnlVector;
vnlVector.fill(1.0);
ITK_TRY_EXPECT_EXCEPTION(transform->TransformVector(vnlVector));
typename TransformType::InputCovariantVectorType covVector;
covVector.Fill(1.0);
ITK_TRY_EXPECT_EXCEPTION(transform->TransformCovariantVector(covVector));
auto point = itk::MakeFilled<typename TransformType::InputPointType>(1.0);
typename TransformType::JacobianPositionType jacobianPosition;
ITK_TRY_EXPECT_EXCEPTION(transform->ComputeJacobianWithRespectToPosition(point, jacobianPosition));
}
// Exercise basic object methods and test Set/Get macros
{
auto transform = TransformType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(transform, Rigid3DPerspectiveTransform, Transform);
typename TransformType::OffsetType fixedOffset;
fixedOffset.Fill(0);
transform->SetFixedOffset(fixedOffset);
ITK_TEST_SET_GET_VALUE(fixedOffset, transform->GetFixedOffset());
typename TransformType::InputPointType centerOfRotation;
centerOfRotation.Fill(0);
transform->SetCenterOfRotation(centerOfRotation);
ITK_TEST_SET_GET_VALUE(centerOfRotation, transform->GetCenterOfRotation());
// This transform has no fixed parameters; empty method body; called for coverage purposes
typename TransformType::FixedParametersType::ValueType fixedParametersValues = 0;
typename TransformType::FixedParametersType fixedParameters;
fixedParameters.Fill(fixedParametersValues);
transform->SetFixedParameters(fixedParameters);
}
/* Create a 3D identity transformation and show its parameters */
{
auto identityTransform = TransformType::New();
identityTransform->SetFocalDistance(focal);
TransformType::OffsetType offset = identityTransform->GetOffset();
std::cout << "Vector from instantiating an identity transform: ";
std::cout << offset << std::endl;
for (unsigned int i = 0; i < N; ++i)
{
if (itk::Math::abs(offset[i] - 0.0) > epsilon)
{
Ok = false;
break;
}
}
if (!Ok)
{
std::cerr << "Identity doesn't have a null offset" << std::endl;
return EXIT_FAILURE;
}
}
/* Create a Rigid 3D transform with translation */
{
auto translation = TransformType::New();
translation->SetFocalDistance(focal);
TransformType::OffsetType ioffset;
ioffset.Fill(0.0);
translation->SetOffset(ioffset);
ITK_TEST_SET_GET_VALUE(ioffset, translation->GetOffset());
TransformType::OffsetType offset = translation->GetOffset();
std::cout << "pure Translation test: ";
std::cout << offset << std::endl;
for (unsigned int i = 0; i < N; ++i)
{
if (itk::Math::abs(offset[i] - ioffset[i]) > epsilon)
{
Ok = false;
break;
}
}
if (!Ok)
{
std::cerr << "Get Offset differs from SetOffset value " << std::endl;
return EXIT_FAILURE;
}
{
// Projecting an itk::Point
TransformType::InputPointType p;
p.Fill(10);
TransformType::InputPointType q;
q = p + ioffset;
TransformType::OutputPointType s;
const double factor = focal / q[2];
s[0] = q[0] * factor;
s[1] = q[1] * factor;
TransformType::OutputPointType r;
r = translation->TransformPoint(p);
for (unsigned int i = 0; i < N - 1; ++i)
{
if (itk::Math::abs(s[i] - r[i]) > epsilon)
{
Ok = false;
break;
}
}
if (!Ok)
{
std::cerr << "Error translating point: " << p << std::endl;
std::cerr << "Result should be : " << s << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an itk::Point " << std::endl;
}
}
}
/* Create a Rigid 3D transform with a rotation */
{
auto rigid = TransformType::New();
rigid->SetFocalDistance(focal);
TransformType::OffsetType ioffset;
ioffset.Fill(0.0);
rigid->SetOffset(ioffset);
TransformType::OffsetType offset = rigid->GetOffset();
std::cout << "pure Translation test: ";
std::cout << offset << std::endl;
using VersorType = TransformType::VersorType;
VersorType rotation;
VersorType::VectorType axis;
VersorType::ValueType angle = 30.0f * std::atan(1.0f) / 45.0f;
axis[0] = 1.0f;
axis[1] = 1.0f;
axis[2] = 1.0f;
rotation.Set(axis, angle);
rigid->SetRotation(rotation);
ITK_TEST_SET_GET_VALUE(rotation, rigid->GetRotation());
{
// Project an itk::Point
TransformType::InputPointType p;
p.Fill(10.0);
TransformType::InputPointType q;
q = p + ioffset;
TransformType::OutputPointType s;
const double factor = focal / q[2];
s[0] = q[0] * factor;
s[1] = q[1] * factor;
TransformType::OutputPointType r;
r = rigid->TransformPoint(p);
for (unsigned int i = 0; i < N - 1; ++i)
{
if (itk::Math::abs(s[i] - r[i]) > epsilon)
{
Ok = false;
break;
}
}
if (!Ok)
{
std::cerr << "Error rotating point: " << p << std::endl;
std::cerr << "Result should be : " << s << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok rotating an itk::Point " << std::endl;
}
}
}
std::cout << "Test successful" << std::endl;
return EXIT_SUCCESS;
}
|