1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
# ==========================================================================
#
# Copyright NumFOCUS
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0.txt
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==========================================================================*/
import itk
import numpy as np
import pickle
import sys
Dimension = 3
PixelType = itk.D
# List of Transforms to test
transforms_to_test = [
itk.AffineTransform[PixelType, Dimension],
itk.DisplacementFieldTransform[PixelType, Dimension],
itk.Rigid3DTransform[PixelType],
itk.BSplineTransform[PixelType, Dimension, 3],
itk.QuaternionRigidTransform[PixelType],
]
keys_to_test1 = [
"name",
"inputSpaceName",
"outputSpaceName",
"numberOfParameters",
"numberOfFixedParameters",
]
keys_to_test2 = ["parameters", "fixedParameters"]
keys_to_test3 = ["transformParameterization", "parametersValueType", "inputDimension", "outputDimension"]
transform_object_list = []
for i, transform_type in enumerate(transforms_to_test):
transform = transform_type.New()
transform.SetObjectName("transform" + str(i))
transform.SetInputSpaceName("fixedSpace" + str(i))
transform.SetOutputSpaceName("movingSpace" + str(i))
# Check the serialization
serialize_deserialize = pickle.loads(pickle.dumps(transform))
# Test all the attributes
for k in keys_to_test1:
assert serialize_deserialize[k] == transform[k]
# Test all the parameters
for k in keys_to_test2:
assert np.array_equal(serialize_deserialize[k], transform[k])
for k in keys_to_test3:
assert serialize_deserialize["transformType"][k], transform["transformType"][k]
transform_object_list.append(transform)
print("Individual Transforms Test Done")
# Test Composite Transform
transformType = itk.CompositeTransform[PixelType, Dimension]
composite_transform = transformType.New()
# Add the above created transforms in the composite transform
for transform in transform_object_list:
composite_transform.AddTransform(transform)
# Check the serialization of composite transform
serialize_deserialize = pickle.loads(pickle.dumps(composite_transform))
assert serialize_deserialize.GetNumberOfTransforms() == 5
# Not testing for name attributes for the composite transform as
# they are lost in current approach
deserialized_object_list = []
# Get the individual transform objects from the composite transform for testing
for i in range(len(transforms_to_test)):
transform_obj = serialize_deserialize.GetNthTransform(i)
# Test all the attributes
for k in keys_to_test1:
assert transform_obj[k] == transform_object_list[i][k]
# Test all the parameter arrays
for k in keys_to_test2:
assert np.array_equal(transform_obj[k], transform_object_list[i][k])
for k in keys_to_test3:
assert transform_object_list[i]["transformType"][k], transform["transformType"][k]
# Test for transformation using de-serialized BSpline Transform
ImageDimension = 2
SplineOrder = 3
SpaceDimension = ImageDimension
PixelType = itk.D
TransformType = itk.BSplineTransform[PixelType, ImageDimension, SplineOrder]
bspline_transform = TransformType.New()
parameters_values = open(sys.argv[1]).read().split()
parameters_values = [int(x) for x in parameters_values]
fixed_image = itk.imread(sys.argv[2])
InitializerType = itk.BSplineTransformInitializer[TransformType, type(fixed_image)]
transformInitializer = InitializerType.New()
transformInitializer.SetTransform(bspline_transform)
transformInitializer.SetImage(fixed_image)
transformInitializer.SetTransformDomainMeshSize(3)
transformInitializer.InitializeTransform()
# Set parameters by reading them from input file
numberOfParameters = bspline_transform.GetNumberOfParameters()
parameters = [0] * numberOfParameters
numberOfNodes = int(numberOfParameters / SpaceDimension)
for n in range(numberOfNodes):
parameters[n] = parameters_values[n]
parameters[n + numberOfNodes] = parameters_values[n + numberOfNodes]
# Set the parameters in the transform object
o2 = bspline_transform.GetParameters()
o2.SetSize(len(parameters))
for j, v in enumerate(parameters):
o2.SetElement(j, v)
bspline_transform.SetParameters(o2)
# Test serialization of transform object
serialize_deserialize = pickle.loads(pickle.dumps(bspline_transform))
interpolator = itk.LinearInterpolateImageFunction.New(fixed_image)
resampled_image1 = itk.resample_image_filter(
fixed_image,
interpolator=interpolator,
transform=bspline_transform,
size=itk.size(fixed_image),
output_origin=fixed_image.GetOrigin(),
output_spacing=fixed_image.GetSpacing(),
)
resampled_image2 = itk.resample_image_filter(
fixed_image,
interpolator=interpolator,
transform=serialize_deserialize,
size=itk.size(fixed_image),
output_origin=fixed_image.GetOrigin(),
output_spacing=fixed_image.GetSpacing(),
)
# Check if transformed images are same
assert np.array_equal(np.array(resampled_image1), np.array(resampled_image2))
# Check if the displacement fields are same
convert_filter = itk.TransformToDisplacementFieldFilter.IVF22D.New()
convert_filter.SetTransform(bspline_transform)
convert_filter.UseReferenceImageOn()
convert_filter.SetReferenceImage(fixed_image)
convert_filter.Update()
field1 = convert_filter.GetOutput()
field1 = np.array(field1)
convert_filter = itk.TransformToDisplacementFieldFilter.IVF22D.New()
convert_filter.SetTransform(serialize_deserialize)
convert_filter.UseReferenceImageOn()
convert_filter.SetReferenceImage(fixed_image)
convert_filter.Update()
field2 = convert_filter.GetOutput()
field2 = np.array(field2)
assert np.array_equal(np.array(field1), np.array(field2))
|