File: itkTransformSerializationTest.py

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (180 lines) | stat: -rw-r--r-- 6,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# ==========================================================================
#
#   Copyright NumFOCUS
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#          https://www.apache.org/licenses/LICENSE-2.0.txt
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#
# ==========================================================================*/

import itk
import numpy as np
import pickle
import sys

Dimension = 3
PixelType = itk.D

# List of Transforms to test
transforms_to_test = [
    itk.AffineTransform[PixelType, Dimension],
    itk.DisplacementFieldTransform[PixelType, Dimension],
    itk.Rigid3DTransform[PixelType],
    itk.BSplineTransform[PixelType, Dimension, 3],
    itk.QuaternionRigidTransform[PixelType],
]

keys_to_test1 = [
    "name",
    "inputSpaceName",
    "outputSpaceName",
    "numberOfParameters",
    "numberOfFixedParameters",
]
keys_to_test2 = ["parameters", "fixedParameters"]
keys_to_test3 = ["transformParameterization", "parametersValueType", "inputDimension", "outputDimension"]

transform_object_list = []
for i, transform_type in enumerate(transforms_to_test):
    transform = transform_type.New()
    transform.SetObjectName("transform" + str(i))
    transform.SetInputSpaceName("fixedSpace" + str(i))
    transform.SetOutputSpaceName("movingSpace" + str(i))
    # Check the serialization
    serialize_deserialize = pickle.loads(pickle.dumps(transform))
    # Test all the attributes
    for k in keys_to_test1:
        assert serialize_deserialize[k] == transform[k]
    # Test all the parameters
    for k in keys_to_test2:
        assert np.array_equal(serialize_deserialize[k], transform[k])
    for k in keys_to_test3:
        assert serialize_deserialize["transformType"][k], transform["transformType"][k]
    transform_object_list.append(transform)

print("Individual Transforms Test Done")

# Test Composite Transform
transformType = itk.CompositeTransform[PixelType, Dimension]
composite_transform = transformType.New()

# Add the above created transforms in the composite transform
for transform in transform_object_list:
    composite_transform.AddTransform(transform)

# Check the serialization of composite transform
serialize_deserialize = pickle.loads(pickle.dumps(composite_transform))
assert serialize_deserialize.GetNumberOfTransforms() == 5

# Not testing for name attributes for the composite transform as
# they are lost in current approach

deserialized_object_list = []

# Get the individual transform objects from the composite transform for testing
for i in range(len(transforms_to_test)):
    transform_obj = serialize_deserialize.GetNthTransform(i)

    # Test all the attributes
    for k in keys_to_test1:
        assert transform_obj[k] == transform_object_list[i][k]

    # Test all the parameter arrays
    for k in keys_to_test2:
        assert np.array_equal(transform_obj[k], transform_object_list[i][k])

    for k in keys_to_test3:
        assert transform_object_list[i]["transformType"][k], transform["transformType"][k]


# Test for transformation using de-serialized BSpline Transform
ImageDimension = 2
SplineOrder = 3
SpaceDimension = ImageDimension
PixelType = itk.D

TransformType = itk.BSplineTransform[PixelType, ImageDimension, SplineOrder]
bspline_transform = TransformType.New()

parameters_values = open(sys.argv[1]).read().split()
parameters_values = [int(x) for x in parameters_values]

fixed_image = itk.imread(sys.argv[2])

InitializerType = itk.BSplineTransformInitializer[TransformType, type(fixed_image)]
transformInitializer = InitializerType.New()
transformInitializer.SetTransform(bspline_transform)
transformInitializer.SetImage(fixed_image)
transformInitializer.SetTransformDomainMeshSize(3)
transformInitializer.InitializeTransform()

# Set parameters by reading them from input file
numberOfParameters = bspline_transform.GetNumberOfParameters()
parameters = [0] * numberOfParameters
numberOfNodes = int(numberOfParameters / SpaceDimension)
for n in range(numberOfNodes):
    parameters[n] = parameters_values[n]
    parameters[n + numberOfNodes] = parameters_values[n + numberOfNodes]

# Set the parameters in the transform object
o2 = bspline_transform.GetParameters()
o2.SetSize(len(parameters))
for j, v in enumerate(parameters):
    o2.SetElement(j, v)
bspline_transform.SetParameters(o2)


# Test serialization of transform object
serialize_deserialize = pickle.loads(pickle.dumps(bspline_transform))

interpolator = itk.LinearInterpolateImageFunction.New(fixed_image)

resampled_image1 = itk.resample_image_filter(
    fixed_image,
    interpolator=interpolator,
    transform=bspline_transform,
    size=itk.size(fixed_image),
    output_origin=fixed_image.GetOrigin(),
    output_spacing=fixed_image.GetSpacing(),
)

resampled_image2 = itk.resample_image_filter(
    fixed_image,
    interpolator=interpolator,
    transform=serialize_deserialize,
    size=itk.size(fixed_image),
    output_origin=fixed_image.GetOrigin(),
    output_spacing=fixed_image.GetSpacing(),
)

# Check if transformed images are same
assert np.array_equal(np.array(resampled_image1), np.array(resampled_image2))


# Check if the displacement fields are same
convert_filter = itk.TransformToDisplacementFieldFilter.IVF22D.New()
convert_filter.SetTransform(bspline_transform)
convert_filter.UseReferenceImageOn()
convert_filter.SetReferenceImage(fixed_image)
convert_filter.Update()
field1 = convert_filter.GetOutput()
field1 = np.array(field1)

convert_filter = itk.TransformToDisplacementFieldFilter.IVF22D.New()
convert_filter.SetTransform(serialize_deserialize)
convert_filter.UseReferenceImageOn()
convert_filter.SetReferenceImage(fixed_image)
convert_filter.Update()
field2 = convert_filter.GetOutput()
field2 = np.array(field2)

assert np.array_equal(np.array(field1), np.array(field2))