1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkAnisotropicDiffusionImageFilter_h
#define itkAnisotropicDiffusionImageFilter_h
#include "itkDenseFiniteDifferenceImageFilter.h"
#include "itkAnisotropicDiffusionFunction.h"
#include "itkNumericTraits.h"
namespace itk
{
/** \class AnisotropicDiffusionImageFilter
* This filter is the base class for a set of filters that iteratively diffuse
* images by solving non-linear partial differential equations based on the
* classical heat equation. For an overview of the diffusion algorithm, see
* AnisotropicImageFunction. AnisotropicDiffusionImageFilter is a subclass
* of itkFiniteDifferenceImageFilter and is part of the finite difference
* solver hierarchy.
*
* \par Inputs and Outputs
* This is an image-to-image filter. The requirements for data types and
* dimensionality of the input and output are defined by subclasses. In
* general, these filters expect images of real-valued types. This means
* pixel types of floats, doubles, or a user-defined type with floating point
* accuracy and arithmetic operations.
*
* \par Parameters
* Set/GetNumberOfIterations specifies the number of iterations (time-step updates)
* that the solver will perform to produce a solution image. The appropriate
* number of iterations is dependent on the application and the image being
* processed. As a general rule, the more iterations performed, the more
* diffused the image will become.
*
* \par
* Set/GetTimeStep sets the time step to be used for each iteration (update).
* This parameter is described in detail in itkAnisotropicDiffusionFunction.
* The time step is constrained at run-time to keep the solution stable. In
* general, the time step should be at or below \f$(PixelSpacing)/2^{N+1}\f$,
* where \f$N\f$ is the dimensionality of the image.
*
* \par
* Set/GetConductanceParameter set a common parameter used by subclasses of
* itkAnisotropicDiffusionFunction. See itkAnisotropicDiffusionFunction for
* detailed information.
*
* \par How to use this filter
* AnisotropicDiffusionImageFilter must be subclassed to be used. This class
* implements a generic framework for other diffusion filters.
*
* \sa GradientAnisotropicDiffusionImageFilter
* \sa VectorGradientAnisotropicDiffusionImageFilter
* \sa CurvatureAnisotropicDiffusionImageFilter
* \sa VectorCurvatureAnisotropicDiffusionImageFilter
* \ingroup ImageEnhancement
* \ingroup ITKAnisotropicSmoothing
*/
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT AnisotropicDiffusionImageFilter
: public DenseFiniteDifferenceImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(AnisotropicDiffusionImageFilter);
/** Standard class type aliases. */
using Self = AnisotropicDiffusionImageFilter;
using Superclass = DenseFiniteDifferenceImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(AnisotropicDiffusionImageFilter);
/** Capture information from the superclass. */
using typename Superclass::InputImageType;
using typename Superclass::OutputImageType;
using typename Superclass::UpdateBufferType;
/** Dimensionality of input and output data is assumed to be the same.
* It is inherited from the superclass. */
static constexpr unsigned int ImageDimension = Superclass::ImageDimension;
/** The pixel type of the output image will be used in computations.
* Inherited from the superclass. */
using typename Superclass::PixelType;
using typename Superclass::TimeStepType;
/** Set/Get the time step for each iteration */
itkSetMacro(TimeStep, TimeStepType);
itkGetConstMacro(TimeStep, TimeStepType);
/** Set/Get the conductance parameter governing sensitivity of the
conductance equation. */
itkSetMacro(ConductanceParameter, double);
itkGetConstMacro(ConductanceParameter, double);
/** Set/Get the interval at which a new scaling for the conductance term is
calculated. */
itkSetMacro(ConductanceScalingUpdateInterval, unsigned int);
itkGetConstMacro(ConductanceScalingUpdateInterval, unsigned int);
/** The following parameters are not used at this time. Setting them will
have no effect on the output */
itkSetMacro(ConductanceScalingParameter, double);
itkGetConstMacro(ConductanceScalingParameter, double);
/** Supplies a fixed value for the average gradient magnitude of the image to
the AnisotropicDiffusionFunction at each iteration. The average gradient
magnitude is normally calculated over the entire image before each
iteration and is used as a scaling factor in the calculations of change
at a pixel. This method is useful in streaming applications to avoid
block artifacts by overriding the normal gradient magnitude calculation
(i.e. all image chunks are scaled uniformly). */
void
SetFixedAverageGradientMagnitude(double a)
{
m_FixedAverageGradientMagnitude = a;
this->Modified();
m_GradientMagnitudeIsFixed = true;
}
itkGetConstMacro(FixedAverageGradientMagnitude, double);
protected:
AnisotropicDiffusionImageFilter();
~AnisotropicDiffusionImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Supplies the halting criteria for this class of filters. The
* algorithm will stop after a user-specified number of iterations. */
// virtual bool Halt();
/** Prepare for the iteration process. */
void
InitializeIteration() override;
bool m_GradientMagnitudeIsFixed{};
private:
double m_ConductanceParameter{};
double m_ConductanceScalingParameter{};
unsigned int m_ConductanceScalingUpdateInterval{};
double m_FixedAverageGradientMagnitude{};
TimeStepType m_TimeStep{};
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkAnisotropicDiffusionImageFilter.hxx"
#endif
#endif
|