File: itkAntiAliasBinaryImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (138 lines) | stat: -rw-r--r-- 4,695 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkAntiAliasBinaryImageFilter_hxx
#define itkAntiAliasBinaryImageFilter_hxx

#include "itkMinimumMaximumImageCalculator.h"
#include "itkMath.h"

namespace itk
{

template <typename TInputImage, typename TOutputImage>
AntiAliasBinaryImageFilter<TInputImage, TOutputImage>::AntiAliasBinaryImageFilter()
  : m_UpperBinaryValue(NumericTraits<BinaryValueType>::OneValue())
  , m_LowerBinaryValue(BinaryValueType{})
  , m_InputImage(nullptr)
{
  m_CurvatureFunction = CurvatureFunctionType::New();
  this->SetDifferenceFunction(m_CurvatureFunction);

  if (TInputImage::ImageDimension == 2)
  {
    this->SetNumberOfLayers(2);
  }
  else
  {
    if (TInputImage::ImageDimension == 3)
    {
      this->SetNumberOfLayers(3);
    }
    else
    {
      this->SetNumberOfLayers(TInputImage::ImageDimension);
    }
  }

  this->SetMaximumRMSError(0.07);
  this->SetNumberOfIterations(1000);
  this->SetUseImageSpacing(false);
}

template <typename TInputImage, typename TOutputImage>
auto
AntiAliasBinaryImageFilter<TInputImage, TOutputImage>::CalculateUpdateValue(const IndexType &    idx,
                                                                            const TimeStepType & dt,
                                                                            const ValueType &    value,
                                                                            const ValueType &    change) -> ValueType
{
  // This method introduces the constraint on the flow of the surface.

  const BinaryValueType binary_val = m_InputImage->GetPixel(idx);
  const ValueType       new_value = value + dt * change;

  if (Math::ExactlyEquals(binary_val, m_UpperBinaryValue))
  {
    return (std::max(new_value, this->GetValueZero()));
  }
  else
  {
    return (std::min(new_value, this->GetValueZero()));
  }
}

template <typename TInputImage, typename TOutputImage>
void
AntiAliasBinaryImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  this->InterpolateSurfaceLocationOff(); // no need for interpolation here
  if (TInputImage::ImageDimension > 3 && this->GetNumberOfLayers() < 4)
  {
    itkWarningMacro("Only 3 layers are being used in the solver."
                    << "  You should consider using at least as many layers as dimensions of your input."
                    << "  This value can be set by calling SetNumberOfLayers(n) on this filter.");
  }

  m_InputImage = this->GetInput();

  // Find the minimum and maximum of the input image and use these values to
  // set m_UpperBinaryValue, m_LowerBinaryValue, and m_IsoSurfaceValue in the
  // parent class.
  typename itk::MinimumMaximumImageCalculator<InputImageType>::Pointer minmax =
    itk::MinimumMaximumImageCalculator<InputImageType>::New();
  minmax->SetImage(m_InputImage);
  minmax->ComputeMinimum();
  minmax->ComputeMaximum();

  m_UpperBinaryValue = minmax->GetMaximum();
  m_LowerBinaryValue = minmax->GetMinimum();

  auto min = static_cast<ValueType>(minmax->GetMinimum());
  auto max = static_cast<ValueType>(minmax->GetMaximum());

  // IsoSurface value is halfway between minimum and maximum.  In a binary
  // image, this places the zero level sets correctly no matter what the binary
  // values may be.

  this->SetIsoSurfaceValue(max - ((max - min) / 2.0));

  // Start the solver
  Superclass::GenerateData();

  // Release the pointer
  m_InputImage = nullptr;
}

template <typename TInputImage, typename TOutputImage>
void
AntiAliasBinaryImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent
     << "UpperBinaryValue: " << static_cast<typename NumericTraits<BinaryValueType>::PrintType>(m_UpperBinaryValue)
     << std::endl;
  os << indent
     << "LowerBinaryValue: " << static_cast<typename NumericTraits<BinaryValueType>::PrintType>(m_LowerBinaryValue)
     << std::endl;

  itkPrintSelfObjectMacro(InputImage);
}
} // end namespace itk

#endif