File: itkInverseDeconvolutionImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (177 lines) | stat: -rw-r--r-- 6,065 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkInverseDeconvolutionImageFilter_h
#define itkInverseDeconvolutionImageFilter_h

#include "itkFFTConvolutionImageFilter.h"
#include "itkMath.h"

namespace itk
{
/**
 * \class InverseDeconvolutionImageFilter
 * \brief The direct linear inverse deconvolution filter.
 *
 * The inverse filter is the most straightforward deconvolution
 * method. Considering that convolution of two images in the spatial domain is
 * equivalent to multiplying the Fourier transform of the two images,
 * the inverse filter consists of inverting the multiplication. In
 * other words, this filter computes the following:
 * \f[ hat{F}(\omega) =
 *       \begin{cases}
 *         G(\omega) / H(\omega) & \text{if $|H(\omega)| \geq \epsilon$} \\
 *         0                     & \text{otherwise}
 *       \end{cases}
 * \f]
 * where \f$\hat{F}(\omega)\f$ is the Fourier transform of the
 * estimate produced by this filter, \f$G(\omega)\f$ is the Fourier
 * transform of the input blurred image, \f$H(\omega)\f$ is the
 * Fourier transform of the blurring kernel, and \f$\epsilon\f$ is a
 * constant real non-negative threshold (called
 * KernelZeroMagnitudeThreshold in this filter) that determines when
 * the magnitude of a complex number is considered zero.
 *
 * \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
 * \author Cory Quammen, The University of North Carolina at Chapel Hill
 *
 * \ingroup ITKDeconvolution
 *
 */
template <typename TInputImage,
          typename TKernelImage = TInputImage,
          typename TOutputImage = TInputImage,
          typename TInternalPrecision = double>
class ITK_TEMPLATE_EXPORT InverseDeconvolutionImageFilter
  : public FFTConvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(InverseDeconvolutionImageFilter);

  using Self = InverseDeconvolutionImageFilter;
  using Superclass = FFTConvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(InverseDeconvolutionImageFilter);

  /** Dimensionality of input and output data is assumed to be the same. */
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;

  using InputImageType = TInputImage;
  using OutputImageType = TOutputImage;
  using KernelImageType = TKernelImage;
  using typename Superclass::InputPixelType;
  using typename Superclass::OutputPixelType;
  using typename Superclass::KernelPixelType;
  using typename Superclass::InputIndexType;
  using typename Superclass::OutputIndexType;
  using typename Superclass::KernelIndexType;
  using typename Superclass::InputSizeType;
  using typename Superclass::OutputSizeType;
  using typename Superclass::KernelSizeType;
  using typename Superclass::SizeValueType;
  using typename Superclass::InputRegionType;
  using typename Superclass::OutputRegionType;
  using typename Superclass::KernelRegionType;

  /** Internal image types. */
  using typename Superclass::InternalImageType;
  using typename Superclass::InternalImagePointerType;
  using typename Superclass::InternalComplexType;
  using typename Superclass::InternalComplexImageType;
  using typename Superclass::InternalComplexImagePointerType;

  /** Set/get the threshold value used to determine whether a
   * frequency of the Fourier transform of the blurring kernel is
   * considered to be zero. Default value is 1.0e-4. */
  itkSetMacro(KernelZeroMagnitudeThreshold, double);
  itkGetConstMacro(KernelZeroMagnitudeThreshold, double);

protected:
  InverseDeconvolutionImageFilter();
  ~InverseDeconvolutionImageFilter() override = default;

  /** This filter uses a minipipeline to compute the output. */
  void
  GenerateData() override;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

private:
  double m_KernelZeroMagnitudeThreshold{};
};

namespace Functor
{
template <typename TInput1, typename TInput2, typename TOutput>
class ITK_TEMPLATE_EXPORT InverseDeconvolutionFunctor
{
public:
  InverseDeconvolutionFunctor() { m_KernelZeroMagnitudeThreshold = 0.0; }
  ~InverseDeconvolutionFunctor() = default;

  bool
  operator==(const InverseDeconvolutionFunctor &) const
  {
    return true;
  }

  ITK_UNEQUAL_OPERATOR_MEMBER_FUNCTION(InverseDeconvolutionFunctor);

  inline TOutput
  operator()(const TInput1 & I, const TInput2 & H) const
  {
    const double absH = itk::Math::abs(H);
    TOutput      value{};
    if (absH >= m_KernelZeroMagnitudeThreshold)
    {
      value = static_cast<TOutput>(I / H);
    }
    return value;
  }

  /** Set/get the threshold value below which complex magnitudes are considered
   * to be zero. */
  void
  SetKernelZeroMagnitudeThreshold(double mu)
  {
    m_KernelZeroMagnitudeThreshold = mu;
  }
  double
  GetKernelZeroMagnitudeThreshold() const
  {
    return m_KernelZeroMagnitudeThreshold;
  }

private:
  double m_KernelZeroMagnitudeThreshold;
};
} // namespace Functor

} // namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkInverseDeconvolutionImageFilter.hxx"
#endif

#endif