1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkInverseDeconvolutionImageFilter_h
#define itkInverseDeconvolutionImageFilter_h
#include "itkFFTConvolutionImageFilter.h"
#include "itkMath.h"
namespace itk
{
/**
* \class InverseDeconvolutionImageFilter
* \brief The direct linear inverse deconvolution filter.
*
* The inverse filter is the most straightforward deconvolution
* method. Considering that convolution of two images in the spatial domain is
* equivalent to multiplying the Fourier transform of the two images,
* the inverse filter consists of inverting the multiplication. In
* other words, this filter computes the following:
* \f[ hat{F}(\omega) =
* \begin{cases}
* G(\omega) / H(\omega) & \text{if $|H(\omega)| \geq \epsilon$} \\
* 0 & \text{otherwise}
* \end{cases}
* \f]
* where \f$\hat{F}(\omega)\f$ is the Fourier transform of the
* estimate produced by this filter, \f$G(\omega)\f$ is the Fourier
* transform of the input blurred image, \f$H(\omega)\f$ is the
* Fourier transform of the blurring kernel, and \f$\epsilon\f$ is a
* constant real non-negative threshold (called
* KernelZeroMagnitudeThreshold in this filter) that determines when
* the magnitude of a complex number is considered zero.
*
* \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
* \author Cory Quammen, The University of North Carolina at Chapel Hill
*
* \ingroup ITKDeconvolution
*
*/
template <typename TInputImage,
typename TKernelImage = TInputImage,
typename TOutputImage = TInputImage,
typename TInternalPrecision = double>
class ITK_TEMPLATE_EXPORT InverseDeconvolutionImageFilter
: public FFTConvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(InverseDeconvolutionImageFilter);
using Self = InverseDeconvolutionImageFilter;
using Superclass = FFTConvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(InverseDeconvolutionImageFilter);
/** Dimensionality of input and output data is assumed to be the same. */
static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
using InputImageType = TInputImage;
using OutputImageType = TOutputImage;
using KernelImageType = TKernelImage;
using typename Superclass::InputPixelType;
using typename Superclass::OutputPixelType;
using typename Superclass::KernelPixelType;
using typename Superclass::InputIndexType;
using typename Superclass::OutputIndexType;
using typename Superclass::KernelIndexType;
using typename Superclass::InputSizeType;
using typename Superclass::OutputSizeType;
using typename Superclass::KernelSizeType;
using typename Superclass::SizeValueType;
using typename Superclass::InputRegionType;
using typename Superclass::OutputRegionType;
using typename Superclass::KernelRegionType;
/** Internal image types. */
using typename Superclass::InternalImageType;
using typename Superclass::InternalImagePointerType;
using typename Superclass::InternalComplexType;
using typename Superclass::InternalComplexImageType;
using typename Superclass::InternalComplexImagePointerType;
/** Set/get the threshold value used to determine whether a
* frequency of the Fourier transform of the blurring kernel is
* considered to be zero. Default value is 1.0e-4. */
itkSetMacro(KernelZeroMagnitudeThreshold, double);
itkGetConstMacro(KernelZeroMagnitudeThreshold, double);
protected:
InverseDeconvolutionImageFilter();
~InverseDeconvolutionImageFilter() override = default;
/** This filter uses a minipipeline to compute the output. */
void
GenerateData() override;
void
PrintSelf(std::ostream & os, Indent indent) const override;
private:
double m_KernelZeroMagnitudeThreshold{};
};
namespace Functor
{
template <typename TInput1, typename TInput2, typename TOutput>
class ITK_TEMPLATE_EXPORT InverseDeconvolutionFunctor
{
public:
InverseDeconvolutionFunctor() { m_KernelZeroMagnitudeThreshold = 0.0; }
~InverseDeconvolutionFunctor() = default;
bool
operator==(const InverseDeconvolutionFunctor &) const
{
return true;
}
ITK_UNEQUAL_OPERATOR_MEMBER_FUNCTION(InverseDeconvolutionFunctor);
inline TOutput
operator()(const TInput1 & I, const TInput2 & H) const
{
const double absH = itk::Math::abs(H);
TOutput value{};
if (absH >= m_KernelZeroMagnitudeThreshold)
{
value = static_cast<TOutput>(I / H);
}
return value;
}
/** Set/get the threshold value below which complex magnitudes are considered
* to be zero. */
void
SetKernelZeroMagnitudeThreshold(double mu)
{
m_KernelZeroMagnitudeThreshold = mu;
}
double
GetKernelZeroMagnitudeThreshold() const
{
return m_KernelZeroMagnitudeThreshold;
}
private:
double m_KernelZeroMagnitudeThreshold;
};
} // namespace Functor
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkInverseDeconvolutionImageFilter.hxx"
#endif
#endif
|