File: itkLandweberDeconvolutionImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (174 lines) | stat: -rw-r--r-- 6,244 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLandweberDeconvolutionImageFilter_h
#define itkLandweberDeconvolutionImageFilter_h

#include "itkIterativeDeconvolutionImageFilter.h"

#include "itkComplexConjugateImageAdaptor.h"
#include "itkTernaryGeneratorImageFilter.h"

namespace itk
{
namespace Functor
{
/**
 * \class LandweberMethod
 * \brief Functor class for computing a Landweber iteration.
 * \ingroup ITKDeconvolution
 */
template <typename TInput1, typename TInput2, typename TInput3, typename TOutput>
class ITK_TEMPLATE_EXPORT LandweberMethod
{
public:
  bool
  operator==(const LandweberMethod &) const
  {
    return true;
  }

  ITK_UNEQUAL_OPERATOR_MEMBER_FUNCTION(LandweberMethod);

  inline TOutput
  operator()(const TInput1 & estimateFT, const TInput2 & kernelFT, const TInput2 & inputFT) const
  {
    return m_Alpha * std::conj(kernelFT) * inputFT +
           (NumericTraits<typename TInput1::value_type>::OneValue() - m_Alpha * std::norm(kernelFT)) * estimateFT;
  }

  typename TInput1::value_type m_Alpha;
};
} // end namespace Functor

/**
 * \class LandweberDeconvolutionImageFilter
 * \brief Deconvolve an image using the Landweber deconvolution
 * algorithm.
 *
 * This filter implements the Landweber deconvolution algorithm as
 * defined in Bertero M and Boccacci P, "Introduction to Inverse
 * Problems in Imaging", 1998. The algorithm assumes that the input
 * image has been formed by a linear shift-invariant system with a
 * known kernel.
 *
 * The Landweber algorithm converges to a solution that minimizes the
 * sum of squared errors \f$||f \otimes h - g||\f$ where \f$f\f$ is
 * the estimate of the unblurred image, \f$\otimes\f$ is the
 * convolution operator, \f$h\f$ is the blurring kernel, and \f$g\f$ is
 * the blurred input image. As such, it is best suited for images that
 * have zero-mean Gaussian white noise.
 *
 * This is the base implementation of the Landweber algorithm. It may
 * produce results with negative values. For a version of this
 * algorithm that enforces a positivity constraint on each
 * intermediate solution, see ProjectedLandweberDeconvolutionImageFilter.
 *
 * This code was adapted from the Insight Journal contribution:
 *
 * "Deconvolution: infrastructure and reference algorithms"
 * by Gaetan Lehmann
 * https://www.insight-journal.org/browse/publication/753
 *
 * \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
 * \author Cory Quammen, The University of North Carolina at Chapel Hill
 *
 * \ingroup ITKDeconvolution
 * \sa IterativeDeconvolutionImageFilter
 * \sa RichardsonLucyDeconvolutionImageFilter
 * \sa ProjectedLandweberDeconvolutionImageFilter
 */
template <typename TInputImage,
          typename TKernelImage = TInputImage,
          typename TOutputImage = TInputImage,
          typename TInternalPrecision = double>
class ITK_TEMPLATE_EXPORT LandweberDeconvolutionImageFilter
  : public IterativeDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(LandweberDeconvolutionImageFilter);

  /** Standard type alias. */
  using Self = LandweberDeconvolutionImageFilter;
  using Superclass = IterativeDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Other useful type alias. */
  using InputImageType = TInputImage;
  using KernelImageType = TKernelImage;
  using OutputImageType = TOutputImage;

  /** Internal types used by the FFT filters. */
  using typename Superclass::InternalImageType;
  using typename Superclass::InternalImagePointerType;
  using typename Superclass::InternalComplexType;
  using typename Superclass::InternalComplexImageType;
  using typename Superclass::InternalComplexImagePointerType;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(LandweberDeconvolutionImageFilter);

  /** Set/get relaxation factor. */
  itkSetMacro(Alpha, double);
  itkGetMacro(Alpha, double);

protected:
  LandweberDeconvolutionImageFilter();
  ~LandweberDeconvolutionImageFilter() override;

  void
  Initialize(ProgressAccumulator * progress, float progressWeight, float iterationProgressWeight) override;

  void
  Iteration(ProgressAccumulator * progress, float iterationProgressWeight) override;

  void
  Finish(ProgressAccumulator * progress, float progressWeight) override;

  using typename Superclass::FFTFilterType;
  using typename Superclass::IFFTFilterType;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

private:
  double m_Alpha{};

  InternalComplexImagePointerType m_TransformedInput{};

  using LandweberFunctor =
    Functor::LandweberMethod<InternalComplexType, InternalComplexType, InternalComplexType, InternalComplexType>;
  using LandweberFilterType = TernaryGeneratorImageFilter<InternalComplexImageType,
                                                          InternalComplexImageType,
                                                          InternalComplexImageType,
                                                          InternalComplexImageType>;

  typename LandweberFilterType::Pointer m_LandweberFilter{};
  typename IFFTFilterType::Pointer      m_IFFTFilter{};
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkLandweberDeconvolutionImageFilter.hxx"
#endif

#endif