File: itkLandweberDeconvolutionImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (117 lines) | stat: -rw-r--r-- 4,564 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLandweberDeconvolutionImageFilter_hxx
#define itkLandweberDeconvolutionImageFilter_hxx


namespace itk
{

template <typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision>
LandweberDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>::
  LandweberDeconvolutionImageFilter()
{
  m_Alpha = 0.1;
  m_TransformedInput = nullptr;
}

template <typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision>
LandweberDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>::
  ~LandweberDeconvolutionImageFilter()
{
  m_TransformedInput = nullptr;
}

template <typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision>
void
LandweberDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>::Initialize(
  ProgressAccumulator * progress,
  float                 progressWeight,
  float                 iterationProgressWeight)
{
  this->Superclass::Initialize(progress, 0.5f * progressWeight, iterationProgressWeight);

  this->PrepareInput(this->GetInput(), m_TransformedInput, progress, 0.5f * progressWeight);

  // Set up minipipeline to compute estimate at each iteration
  m_LandweberFilter = LandweberFilterType::New();

  LandweberFunctor functor;
  functor.m_Alpha = m_Alpha;
  m_LandweberFilter->SetFunctor(functor);
  m_LandweberFilter->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  // Transform of current estimate will be set as input 1 in Iteration()
  m_LandweberFilter->SetInput2(this->m_TransferFunction);
  m_LandweberFilter->SetInput3(m_TransformedInput);
  m_LandweberFilter->ReleaseDataFlagOn();
  progress->RegisterInternalFilter(m_LandweberFilter, 0.3f * iterationProgressWeight);

  m_IFFTFilter = IFFTFilterType::New();
  m_IFFTFilter->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  m_IFFTFilter->SetActualXDimensionIsOdd(this->GetXDimensionIsOdd());
  m_IFFTFilter->SetInput(m_LandweberFilter->GetOutput());
  m_IFFTFilter->ReleaseDataFlagOn();
  progress->RegisterInternalFilter(m_IFFTFilter, 0.7f * iterationProgressWeight);
}

template <typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision>
void
LandweberDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>::Iteration(
  ProgressAccumulator * progress,
  float                 iterationProgressWeight)
{
  // Set up minipipeline to compute the new estimate
  InternalComplexImagePointerType transformedEstimate;
  this->TransformPaddedInput(this->m_CurrentEstimate, transformedEstimate, progress, 0.1f * iterationProgressWeight);

  // Set the inputs
  m_LandweberFilter->SetInput1(transformedEstimate);

  // Trigger the update
  m_IFFTFilter->UpdateLargestPossibleRegion();

  // Store the current estimate
  this->m_CurrentEstimate = m_IFFTFilter->GetOutput();
  this->m_CurrentEstimate->DisconnectPipeline();
}

template <typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision>
void
LandweberDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>::Finish(
  ProgressAccumulator * progress,
  float                 progressWeight)
{
  this->Superclass::Finish(progress, progressWeight);

  m_LandweberFilter = nullptr;
  m_IFFTFilter = nullptr;
}

template <typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision>
void
LandweberDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>::PrintSelf(
  std::ostream & os,
  Indent         indent) const
{
  this->Superclass::PrintSelf(os, indent);

  os << indent << "Alpha: " << m_Alpha << std::endl;
}
} // end namespace itk

#endif