1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkTikhonovDeconvolutionImageFilter_h
#define itkTikhonovDeconvolutionImageFilter_h
#include "itkInverseDeconvolutionImageFilter.h"
namespace itk
{
/**
* \class TikhonovDeconvolutionImageFilter
* \brief An inverse deconvolution filter regularized in the Tikhonov sense.
*
* The Tikhonov deconvolution filter is the inverse deconvolution
* filter with a regularization term added to the denominator.
* The filter minimizes the equation
* \f[ ||\hat{f} \otimes h - g||_{L_2}^2 + \mu||\hat{f}||^2
* \f]
* where \f$\hat{f}\f$ is the estimate of the unblurred image,
* \f$h\f$ is the blurring kernel, \f$g\f$ is the blurred image, and
* \f$\mu\f$ is a non-negative real regularization function.
*
* The filter applies a kernel described in the Fourier domain as
* \f$H^*(\omega) / (|H(\omega)|^2 + \mu)\f$ where \f$H(\omega)\f$ is
* the Fourier transform of \f$h\f$. The term \f$\mu\f$ is called
* RegularizationConstant in this filter. If \f$\mu\f$ is set to zero,
* this filter is equivalent to the InverseDeconvolutionImageFilter.
*
* \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
* \author Cory Quammen, The University of North Carolina at Chapel Hill
*
* \ingroup ITKDeconvolution
*
*/
template <typename TInputImage,
typename TKernelImage = TInputImage,
typename TOutputImage = TInputImage,
typename TInternalPrecision = double>
class ITK_TEMPLATE_EXPORT TikhonovDeconvolutionImageFilter
: public InverseDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(TikhonovDeconvolutionImageFilter);
using Self = TikhonovDeconvolutionImageFilter;
using Superclass = InverseDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(TikhonovDeconvolutionImageFilter);
/** Dimensionality of input and output data is assumed to be the same. */
static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
using InputImageType = TInputImage;
using OutputImageType = TOutputImage;
using KernelImageType = TKernelImage;
using typename Superclass::InputPixelType;
using typename Superclass::OutputPixelType;
using typename Superclass::KernelPixelType;
using typename Superclass::InputIndexType;
using typename Superclass::OutputIndexType;
using typename Superclass::KernelIndexType;
using typename Superclass::InputSizeType;
using typename Superclass::OutputSizeType;
using typename Superclass::KernelSizeType;
using typename Superclass::SizeValueType;
using typename Superclass::InputRegionType;
using typename Superclass::OutputRegionType;
using typename Superclass::KernelRegionType;
/** Internal image types. */
using typename Superclass::InternalImageType;
using typename Superclass::InternalImagePointerType;
using typename Superclass::InternalComplexType;
using typename Superclass::InternalComplexImageType;
using typename Superclass::InternalComplexImagePointerType;
/** The regularization factor. Larger values reduce the dominance of
* noise in the solution, but results in higher approximation error
* in the deblurred image. Default value is 0.0, yielding the same
* results as the InverseDeconvolutionImageFilter. */
itkSetMacro(RegularizationConstant, double);
itkGetConstMacro(RegularizationConstant, double);
protected:
TikhonovDeconvolutionImageFilter();
~TikhonovDeconvolutionImageFilter() override = default;
/** This filter uses a minipipeline to compute the output. */
void
GenerateData() override;
void
PrintSelf(std::ostream & os, Indent indent) const override;
private:
double m_RegularizationConstant{};
};
namespace Functor
{
template <typename TInput1, typename TInput2, typename TOutput>
class ITK_TEMPLATE_EXPORT TikhonovDeconvolutionFunctor
{
public:
TikhonovDeconvolutionFunctor() = default;
~TikhonovDeconvolutionFunctor() = default;
TikhonovDeconvolutionFunctor(const TikhonovDeconvolutionFunctor & f)
: m_RegularizationConstant(f.m_RegularizationConstant)
, m_KernelZeroMagnitudeThreshold(f.m_KernelZeroMagnitudeThreshold)
{}
bool
operator==(const TikhonovDeconvolutionFunctor &) const
{
return true;
}
ITK_UNEQUAL_OPERATOR_MEMBER_FUNCTION(TikhonovDeconvolutionFunctor);
inline TOutput
operator()(const TInput1 & I, const TInput2 & H) const
{
typename TOutput::value_type normH = std::norm(H);
typename TOutput::value_type denominator = normH + m_RegularizationConstant;
TOutput value{};
if (denominator >= m_KernelZeroMagnitudeThreshold)
{
value = static_cast<TOutput>(I * (std::conj(H) / denominator));
}
return value;
}
/** Set/get the regular constant. This needs to be a non-negative
* real value. */
void
SetRegularizationConstant(double constant)
{
m_RegularizationConstant = constant;
}
double
GetRegularizationConstant() const
{
return m_RegularizationConstant;
}
/** Set/get the threshold value below which complex magnitudes are considered
* to be zero. */
void
SetKernelZeroMagnitudeThreshold(double mu)
{
m_KernelZeroMagnitudeThreshold = mu;
}
double
GetKernelZeroMagnitudeThreshold() const
{
return m_KernelZeroMagnitudeThreshold;
}
private:
double m_RegularizationConstant = 0.0;
double m_KernelZeroMagnitudeThreshold = 0.0;
};
} // namespace Functor
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkTikhonovDeconvolutionImageFilter.hxx"
#endif
#endif
|