File: itkWienerDeconvolutionImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (223 lines) | stat: -rw-r--r-- 8,123 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkWienerDeconvolutionImageFilter_h
#define itkWienerDeconvolutionImageFilter_h

#include "itkInverseDeconvolutionImageFilter.h"
#include "itkMath.h"

namespace itk
{
/**
 * \class WienerDeconvolutionImageFilter
 * \brief The Wiener deconvolution image filter is designed to restore an
 * image convolved with a blurring kernel while keeping noise
 * enhancement to a minimum.
 *
 * The Wiener filter aims to minimize noise enhancement induced by
 * frequencies with low signal-to-noise ratio. The Wiener filter
 * kernel is defined in the frequency domain as \f$W(\omega) =
 * H^*(\omega) / (|H(\omega)|^2 + (1 / SNR(\omega)))\f$ where
 * \f$H(\omega)\f$ is the Fourier transform of the blurring kernel
 * with which the original image was convolved and the signal-to-noise
 * ratio \f$SNR(\omega)\f$. \f$SNR(\omega)\f$ is defined by
 * \f$P_f(\omega) / P_n(\omega)\f$ where \f$P_f(\omega)\f$ is the
 * power spectral density of the uncorrupted signal and
 * \f$P_n(\omega)\f$ is the power spectral density of the noise. When
 * applied to the input blurred image, this filter produces an
 * estimate \f$\hat{f}(x)\f$ of the true underlying signal \f$f(x)\f$
 * that minimizes the expected error between \f$\hat{f}(x)\f$ and
 * \f$f(x)\f$.
 *
 * This filter requires two inputs, the image to be deconvolved and
 * the blurring kernel. These two inputs can be set using the methods
 * SetInput() and SetKernelImage(), respectively.
 *
 * The power spectral densities of the signal and noise are typically
 * unavailable for a given problem. In particular, \f$P_f(\omega)\f$
 * cannot be computed from \f$f(x)\f$ because this unknown signal is
 * precisely the signal that this filter aims to
 * recover. Nevertheless, it is common for the noise to have a power
 * spectral density that is flat or decreasing significantly more
 * slowly than the power spectral density of a typical image as the
 * frequency \f$\omega\f$ increases. Hence, \f$P_n(\omega)\f$ can
 * typically be approximated with a constant, and this filter makes
 * this assumption (see the NoiseVariance member
 * variable). \f$P_f(\omega)\f$, on the other hand, will vary with
 * input. This filter computes the power spectral density of the input
 * blurred image, subtracts the power spectral density of the noise,
 * and uses the result as the estimate of \f$P_f(\omega)\f$.
 *
 * For further information on the Wiener deconvolution filter, please see
 * "Digital Signal Processing" by Kenneth R. Castleman, Prentice Hall, 1995
 *
 * \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
 * \author Chris Mullins, The University of North Carolina at Chapel Hill
 * \author Cory Quammen, The University of North Carolina at Chapel Hill
 *
 * \ingroup ITKDeconvolution
 *
 */
template <typename TInputImage,
          typename TKernelImage = TInputImage,
          typename TOutputImage = TInputImage,
          typename TInternalPrecision = double>
class ITK_TEMPLATE_EXPORT WienerDeconvolutionImageFilter
  : public InverseDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(WienerDeconvolutionImageFilter);

  using Self = WienerDeconvolutionImageFilter;
  using Superclass = InverseDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(WienerDeconvolutionImageFilter);

  /** Dimensionality of input and output data is assumed to be the same. */
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;

  using InputImageType = TInputImage;
  using OutputImageType = TOutputImage;
  using KernelImageType = TKernelImage;
  using typename Superclass::InputPixelType;
  using typename Superclass::OutputPixelType;
  using typename Superclass::KernelPixelType;
  using typename Superclass::InputIndexType;
  using typename Superclass::OutputIndexType;
  using typename Superclass::KernelIndexType;
  using typename Superclass::InputSizeType;
  using typename Superclass::OutputSizeType;
  using typename Superclass::KernelSizeType;
  using typename Superclass::SizeValueType;
  using typename Superclass::InputRegionType;
  using typename Superclass::OutputRegionType;
  using typename Superclass::KernelRegionType;

  /** Internal image types. */
  using typename Superclass::InternalImageType;
  using typename Superclass::InternalImagePointerType;
  using typename Superclass::InternalComplexType;
  using typename Superclass::InternalComplexImageType;
  using typename Superclass::InternalComplexImagePointerType;

  /** Set/get the variance of the zero-mean Gaussian white noise
   * assumed to be added to the input. */
  itkSetMacro(NoiseVariance, double);
  itkGetConstMacro(NoiseVariance, double);

protected:
  WienerDeconvolutionImageFilter();
  ~WienerDeconvolutionImageFilter() override = default;

  /** This filter uses a minipipeline to compute the output. */
  void
  GenerateData() override;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

private:
  double m_NoiseVariance{};
};

namespace Functor
{
template <typename TPixel>
class ITK_TEMPLATE_EXPORT WienerDeconvolutionFunctor
{
public:
  WienerDeconvolutionFunctor() = default;
  ~WienerDeconvolutionFunctor() = default;
  WienerDeconvolutionFunctor(const WienerDeconvolutionFunctor & f)
    : m_NoisePowerSpectralDensityConstant(f.m_NoisePowerSpectralDensityConstant)
    , m_KernelZeroMagnitudeThreshold(f.m_KernelZeroMagnitudeThreshold)
  {}

  bool
  operator==(const WienerDeconvolutionFunctor &) const
  {
    return true;
  }

  ITK_UNEQUAL_OPERATOR_MEMBER_FUNCTION(WienerDeconvolutionFunctor);

  inline TPixel
  operator()(const TPixel & I, const TPixel & H) const
  {
    TPixel Pn = m_NoisePowerSpectralDensityConstant;

    // We estimate the power spectral density of the output image to
    // be the same as the power spectral density of the blurred input
    // minus the power spectral density of the noise.
    TPixel Pf = std::norm(I);

    TPixel denominator = std::norm(H) + (Pn / (Pf - Pn));
    TPixel value{};
    if (itk::Math::abs(denominator) >= m_KernelZeroMagnitudeThreshold)
    {
      value = I * (std::conj(H) / denominator);
    }

    return value;
  }

  /** Set/get the constant defining the noise power spectral density
   * constant. */
  void
  SetNoisePowerSpectralDensityConstant(double constant)
  {
    m_NoisePowerSpectralDensityConstant = constant;
  }
  double
  GetNoisePowerSpectralDensityConstant() const
  {
    return m_NoisePowerSpectralDensityConstant;
  }

  /** Set/get the threshold value below which complex magnitudes are considered
   * to be zero. */
  void
  SetKernelZeroMagnitudeThreshold(double mu)
  {
    m_KernelZeroMagnitudeThreshold = mu;
  }
  double
  GetKernelZeroMagnitudeThreshold() const
  {
    return m_KernelZeroMagnitudeThreshold;
  }

private:
  double m_NoisePowerSpectralDensityConstant = 0.0;
  double m_KernelZeroMagnitudeThreshold = 0.0;
};
} // namespace Functor

} // namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkWienerDeconvolutionImageFilter.hxx"
#endif

#endif