1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkWienerDeconvolutionImageFilter_h
#define itkWienerDeconvolutionImageFilter_h
#include "itkInverseDeconvolutionImageFilter.h"
#include "itkMath.h"
namespace itk
{
/**
* \class WienerDeconvolutionImageFilter
* \brief The Wiener deconvolution image filter is designed to restore an
* image convolved with a blurring kernel while keeping noise
* enhancement to a minimum.
*
* The Wiener filter aims to minimize noise enhancement induced by
* frequencies with low signal-to-noise ratio. The Wiener filter
* kernel is defined in the frequency domain as \f$W(\omega) =
* H^*(\omega) / (|H(\omega)|^2 + (1 / SNR(\omega)))\f$ where
* \f$H(\omega)\f$ is the Fourier transform of the blurring kernel
* with which the original image was convolved and the signal-to-noise
* ratio \f$SNR(\omega)\f$. \f$SNR(\omega)\f$ is defined by
* \f$P_f(\omega) / P_n(\omega)\f$ where \f$P_f(\omega)\f$ is the
* power spectral density of the uncorrupted signal and
* \f$P_n(\omega)\f$ is the power spectral density of the noise. When
* applied to the input blurred image, this filter produces an
* estimate \f$\hat{f}(x)\f$ of the true underlying signal \f$f(x)\f$
* that minimizes the expected error between \f$\hat{f}(x)\f$ and
* \f$f(x)\f$.
*
* This filter requires two inputs, the image to be deconvolved and
* the blurring kernel. These two inputs can be set using the methods
* SetInput() and SetKernelImage(), respectively.
*
* The power spectral densities of the signal and noise are typically
* unavailable for a given problem. In particular, \f$P_f(\omega)\f$
* cannot be computed from \f$f(x)\f$ because this unknown signal is
* precisely the signal that this filter aims to
* recover. Nevertheless, it is common for the noise to have a power
* spectral density that is flat or decreasing significantly more
* slowly than the power spectral density of a typical image as the
* frequency \f$\omega\f$ increases. Hence, \f$P_n(\omega)\f$ can
* typically be approximated with a constant, and this filter makes
* this assumption (see the NoiseVariance member
* variable). \f$P_f(\omega)\f$, on the other hand, will vary with
* input. This filter computes the power spectral density of the input
* blurred image, subtracts the power spectral density of the noise,
* and uses the result as the estimate of \f$P_f(\omega)\f$.
*
* For further information on the Wiener deconvolution filter, please see
* "Digital Signal Processing" by Kenneth R. Castleman, Prentice Hall, 1995
*
* \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
* \author Chris Mullins, The University of North Carolina at Chapel Hill
* \author Cory Quammen, The University of North Carolina at Chapel Hill
*
* \ingroup ITKDeconvolution
*
*/
template <typename TInputImage,
typename TKernelImage = TInputImage,
typename TOutputImage = TInputImage,
typename TInternalPrecision = double>
class ITK_TEMPLATE_EXPORT WienerDeconvolutionImageFilter
: public InverseDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(WienerDeconvolutionImageFilter);
using Self = WienerDeconvolutionImageFilter;
using Superclass = InverseDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(WienerDeconvolutionImageFilter);
/** Dimensionality of input and output data is assumed to be the same. */
static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
using InputImageType = TInputImage;
using OutputImageType = TOutputImage;
using KernelImageType = TKernelImage;
using typename Superclass::InputPixelType;
using typename Superclass::OutputPixelType;
using typename Superclass::KernelPixelType;
using typename Superclass::InputIndexType;
using typename Superclass::OutputIndexType;
using typename Superclass::KernelIndexType;
using typename Superclass::InputSizeType;
using typename Superclass::OutputSizeType;
using typename Superclass::KernelSizeType;
using typename Superclass::SizeValueType;
using typename Superclass::InputRegionType;
using typename Superclass::OutputRegionType;
using typename Superclass::KernelRegionType;
/** Internal image types. */
using typename Superclass::InternalImageType;
using typename Superclass::InternalImagePointerType;
using typename Superclass::InternalComplexType;
using typename Superclass::InternalComplexImageType;
using typename Superclass::InternalComplexImagePointerType;
/** Set/get the variance of the zero-mean Gaussian white noise
* assumed to be added to the input. */
itkSetMacro(NoiseVariance, double);
itkGetConstMacro(NoiseVariance, double);
protected:
WienerDeconvolutionImageFilter();
~WienerDeconvolutionImageFilter() override = default;
/** This filter uses a minipipeline to compute the output. */
void
GenerateData() override;
void
PrintSelf(std::ostream & os, Indent indent) const override;
private:
double m_NoiseVariance{};
};
namespace Functor
{
template <typename TPixel>
class ITK_TEMPLATE_EXPORT WienerDeconvolutionFunctor
{
public:
WienerDeconvolutionFunctor() = default;
~WienerDeconvolutionFunctor() = default;
WienerDeconvolutionFunctor(const WienerDeconvolutionFunctor & f)
: m_NoisePowerSpectralDensityConstant(f.m_NoisePowerSpectralDensityConstant)
, m_KernelZeroMagnitudeThreshold(f.m_KernelZeroMagnitudeThreshold)
{}
bool
operator==(const WienerDeconvolutionFunctor &) const
{
return true;
}
ITK_UNEQUAL_OPERATOR_MEMBER_FUNCTION(WienerDeconvolutionFunctor);
inline TPixel
operator()(const TPixel & I, const TPixel & H) const
{
TPixel Pn = m_NoisePowerSpectralDensityConstant;
// We estimate the power spectral density of the output image to
// be the same as the power spectral density of the blurred input
// minus the power spectral density of the noise.
TPixel Pf = std::norm(I);
TPixel denominator = std::norm(H) + (Pn / (Pf - Pn));
TPixel value{};
if (itk::Math::abs(denominator) >= m_KernelZeroMagnitudeThreshold)
{
value = I * (std::conj(H) / denominator);
}
return value;
}
/** Set/get the constant defining the noise power spectral density
* constant. */
void
SetNoisePowerSpectralDensityConstant(double constant)
{
m_NoisePowerSpectralDensityConstant = constant;
}
double
GetNoisePowerSpectralDensityConstant() const
{
return m_NoisePowerSpectralDensityConstant;
}
/** Set/get the threshold value below which complex magnitudes are considered
* to be zero. */
void
SetKernelZeroMagnitudeThreshold(double mu)
{
m_KernelZeroMagnitudeThreshold = mu;
}
double
GetKernelZeroMagnitudeThreshold() const
{
return m_KernelZeroMagnitudeThreshold;
}
private:
double m_NoisePowerSpectralDensityConstant = 0.0;
double m_KernelZeroMagnitudeThreshold = 0.0;
};
} // namespace Functor
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkWienerDeconvolutionImageFilter.hxx"
#endif
#endif
|