File: itkWienerDeconvolutionImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (87 lines) | stat: -rw-r--r-- 3,143 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkWienerDeconvolutionImageFilter_hxx
#define itkWienerDeconvolutionImageFilter_hxx


#include "itkBinaryGeneratorImageFilter.h"

namespace itk
{

template <typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision>
WienerDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>::
  WienerDeconvolutionImageFilter()
{
  m_NoiseVariance = 0.0;
}

template <typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision>
void
WienerDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>::GenerateData()
{
  // Create a process accumulator for tracking the progress of this
  // minipipeline
  auto progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter(this);

  auto localInput = InputImageType::New();
  localInput->Graft(this->GetInput());

  const KernelImageType * kernelImage = this->GetKernelImage();

  InternalComplexImagePointerType input = nullptr;
  InternalComplexImagePointerType kernel = nullptr;

  this->PrepareInputs(localInput, kernelImage, input, kernel, progress, 0.7);

  using FunctorType = Functor::WienerDeconvolutionFunctor<InternalComplexType>;
  FunctorType wienerFunctor;
  wienerFunctor.SetNoisePowerSpectralDensityConstant(m_NoiseVariance);
  wienerFunctor.SetKernelZeroMagnitudeThreshold(this->GetKernelZeroMagnitudeThreshold());

  using WienerFilterType =
    BinaryGeneratorImageFilter<InternalComplexImageType, InternalComplexImageType, InternalComplexImageType>;
  auto wienerFilter = WienerFilterType::New();
  wienerFilter->SetInput(0, input);
  wienerFilter->SetInput(1, kernel);
  wienerFilter->SetFunctor(wienerFunctor);
  wienerFilter->ReleaseDataFlagOn();

  progress->RegisterInternalFilter(wienerFilter, 0.1);

  // Free up the memory for the prepared inputs
  input = nullptr;
  kernel = nullptr;

  this->ProduceOutput(wienerFilter->GetOutput(), progress, 0.2);
}

template <typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision>
void
WienerDeconvolutionImageFilter<TInputImage, TKernelImage, TOutputImage, TInternalPrecision>::PrintSelf(
  std::ostream & os,
  Indent         indent) const
{
  this->Superclass::PrintSelf(os, indent);

  os << indent << "NoiseVariance: " << m_NoiseVariance << std::endl;
}

} // end namespace itk
#endif