File: itkRichardsonLucyDeconvolutionImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (152 lines) | stat: -rw-r--r-- 5,426 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkFFTConvolutionImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRichardsonLucyDeconvolutionImageFilter.h"
#include "itkDeconvolutionIterationCommand.h"
#include "itkSimpleFilterWatcher.h"
#include "itkTestingMacros.h"

int
itkRichardsonLucyDeconvolutionImageFilterTest(int argc, char * argv[])
{
  if (argc < 5)
  {
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv)
              << " <input image> <kernel image> <output image> <iterations> [convolution image]" << std::endl;
    return EXIT_FAILURE;
  }

  using PixelType = float;
  constexpr unsigned int Dimension = 2;
  using ImageType = itk::Image<PixelType, Dimension>;
  using ReaderType = itk::ImageFileReader<ImageType>;
  using WriterType = itk::ImageFileWriter<ImageType>;

  auto inputReader = ReaderType::New();
  inputReader->SetFileName(argv[1]);
  inputReader->Update();

  auto kernelReader = ReaderType::New();
  kernelReader->SetFileName(argv[2]);
  kernelReader->Update();

  // Generate a convolution of the input image with the kernel image
  using ConvolutionFilterType = itk::FFTConvolutionImageFilter<ImageType>;
  auto convolutionFilter = ConvolutionFilterType::New();
  convolutionFilter->SetInput(inputReader->GetOutput());
  convolutionFilter->NormalizeOn();
  convolutionFilter->SetKernelImage(kernelReader->GetOutput());

  // Optionally write the convolution result
  if (argc > 5)
  {
    try
    {
      auto writer = WriterType::New();
      writer->SetFileName(argv[5]);
      writer->SetInput(convolutionFilter->GetOutput());
      writer->Update();
    }
    catch (const itk::ExceptionObject & e)
    {
      std::cerr << "Unexpected exception caught when writing convolution image: " << e << std::endl;
      return EXIT_FAILURE;
    }
  }

  // Test the deconvolution algorithm
  using DeconvolutionFilterType = itk::RichardsonLucyDeconvolutionImageFilter<ImageType>;
  auto deconvolutionFilter = DeconvolutionFilterType::New();
  deconvolutionFilter->SetInput(convolutionFilter->GetOutput());
  deconvolutionFilter->SetKernelImage(kernelReader->GetOutput());
  deconvolutionFilter->NormalizeOn();
  auto iterations = static_cast<unsigned int>(std::stoi(argv[4]));
  deconvolutionFilter->SetNumberOfIterations(iterations);

  // Add an observer to report on filter iteration progress
  using IterationCommandType = itk::DeconvolutionIterationCommand<DeconvolutionFilterType>;
  auto observer = IterationCommandType::New();
  deconvolutionFilter->AddObserver(itk::IterationEvent(), observer);

  itk::SimpleFilterWatcher watcher(deconvolutionFilter);

  // Write the deconvolution result
  try
  {
    auto writer = WriterType::New();
    writer->SetFileName(argv[3]);
    writer->SetInput(deconvolutionFilter->GetOutput());
    writer->Update();
  }
  catch (const itk::ExceptionObject & e)
  {
    std::cerr << "Unexpected exception caught when writing deconvolution image: " << e << std::endl;
    return EXIT_FAILURE;
  }

  if (!observer->GetInvoked())
  {
    std::cerr << "Iteration command observer was never invoked, but should have been." << std::endl;
    return EXIT_FAILURE;
  }

  // Tests to increase coverage
  deconvolutionFilter->Print(std::cout);

  const DeconvolutionFilterType::InternalImageType * estimate = deconvolutionFilter->GetCurrentEstimate();
  if (estimate != nullptr)
  {
    std::cerr << "Estimate should be nullptr after the last iteration." << std::endl;
    return EXIT_FAILURE;
  }

  unsigned int numIterations = 5;
  deconvolutionFilter->SetNumberOfIterations(numIterations);
  if (deconvolutionFilter->GetNumberOfIterations() != numIterations)
  {
    std::cerr << "Set/GetNumberOfIterations() test failed." << std::endl;
    return EXIT_FAILURE;
  }

  deconvolutionFilter->SetStopIteration(false);
  deconvolutionFilter->SetStopIteration(true);
  if (deconvolutionFilter->GetStopIteration() != true)
  {
    std::cerr << "Set/GetStopIteration() test failed." << std::endl;
    return EXIT_FAILURE;
  }

  unsigned int iteration = deconvolutionFilter->GetIteration();
  std::cout << "Iteration: " << iteration << std::endl;

  std::cout << deconvolutionFilter->DeconvolutionFilterType::Superclass::GetNameOfClass() << std::endl;

  // Instantiate types with non-default template parameters
  using FloatImageType = itk::Image<float, Dimension>;
  using DoubleImageType = itk::Image<double, Dimension>;
  using IntImageType = itk::Image<int, Dimension>;

  using FilterType = itk::RichardsonLucyDeconvolutionImageFilter<FloatImageType, DoubleImageType, IntImageType, float>;
  auto filter = FilterType::New();
  filter->Print(std::cout);

  return EXIT_SUCCESS;
}