1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkPatchBasedDenoisingBaseImageFilter_h
#define itkPatchBasedDenoisingBaseImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkArray.h"
#include "itkSample.h"
#include "itkNumericTraits.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
#include "itkImageToNeighborhoodSampleAdaptor.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkRGBPixel.h"
#include "itkRGBAPixel.h"
#include "itkDiffusionTensor3D.h"
#include "ITKDenoisingExport.h"
namespace itk
{
/** \class PatchBasedDenoisingBaseImageFilterEnums
* \brief Contains all enum classes used by the PatchBasedDenoisingBaseImageFilter class.
* \ingroup ITKDenoising
*/
class PatchBasedDenoisingBaseImageFilterEnums
{
public:
/** \class NoiseModel
* \ingroup Filtering
* \ingroup ITKDenoising
* Type definition for selecting the noise model. */
enum class NoiseModel : uint8_t
{
NOMODEL = 0,
GAUSSIAN = 1,
RICIAN = 2,
POISSON = 3
};
/** \class ComponentState
* \ingroup Filtering
* \ingroup ITKDenoising
* Type definition to determine which space to do calculations in.
* TODO add comment about why no noise model can be used for RIEMANNIAN space
*/
enum class ComponentSpace : uint8_t
{
EUCLIDEAN = 0,
RIEMANNIAN = 1
};
/** \class FilterState
* \ingroup Filtering
* \ingroup ITKDenoising
* State that the filter is in, i.e. UNINITIALIZED or INITIALIZED. */
enum class FilterState : uint8_t
{
UNINITIALIZED = 0,
INITIALIZED = 1
};
};
// Define how to print enumeration
extern ITKDenoising_EXPORT std::ostream &
operator<<(std::ostream & out, const PatchBasedDenoisingBaseImageFilterEnums::NoiseModel value);
extern ITKDenoising_EXPORT std::ostream &
operator<<(std::ostream & out, const PatchBasedDenoisingBaseImageFilterEnums::ComponentSpace value);
// Define how to print enumeration
extern ITKDenoising_EXPORT std::ostream &
operator<<(std::ostream & out, const PatchBasedDenoisingBaseImageFilterEnums::FilterState value);
/**
* \class PatchBasedDenoisingBaseImageFilter
* \brief Base class for patch-based denoising algorithms.
*
* Implementation of a denoising filter that uses iterative non-local, or semi-local, weighted
* averaging of image patches for image denoising. The intensity at each pixel 'p' gets updated as a
* weighted average of intensities of a chosen subset of pixels from the image. The weights are
* derived using a kernel function on distances between (i) the patch around pixel p and (ii) the
* patches around the chosen subset of pixels in the image. This class of methods is motivated by
* texture-based image models and relies on nonparametric statistical modeling in the
* high-dimensional space of image patches. The choice of an appropriate kernel bandwidth parameter
* underlying nonparametric modeling can be important and may be estimated using cross-validation
* schemes.
*
* Engineering issues underlying this class of methods include the choice of the patch size, the
* definition of a weighting mask on patches (e.g. to make patches more isotropic and less
* rectangular), the number of iterations over the image, the scheme for sampling patches from the
* image, and the weights balancing the regularization and data fidelity when the noise model is
* known.
*
* This class of methods stems from the following two independent and simultaneous publications:
*
* Suyash P. Awate, Ross T. Whitaker.
* Higher-Order Image Statistics for Unsupervised, Information-Theoretic, Adaptive, Image Filtering.
* IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR) 2005; (2):44-51.
*
* Antoni Buades, Bartomeu Coll, Jean-Michel Morel.
* A Non-Local Algorithm for Image Denoising.
* IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR) 2005; (2):60-65.
*
* While the former work considers the denoising algorithm as performing entropy reduction using
* nonparametric density estimation, the latter work treats it as nonparametric regression. Details
* underlying this class of methods appear in:
*
* Suyash P. Awate, Ross T. Whitaker.
* Unsupervised, Information-Theoretic, Adaptive Image Filtering for Image Restoration.
* IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2006; 28(3):364-376.
*
* Antoni Buades, Bartomeu Coll, Jean-Michel Morel.
* Nonlocal Image and Movie Denoising.
* International Journal of Computer Vision (IJCV) 2008; 76(2):123-139.
*
* This class provides the base software framework for implementing patch-based denoising methods
* for multi-dimensional and multi-channel (i.e. vector-valued pixels) images. This framework is
* multithreaded on shared-memory architectures. Multithreading is incorporated in, both,
* intensity-updates and bandwidth-estimation stages by subdividing the image domain and associating
* each sub-domain to a single thread for processing.
*
* To prevent oversmoothing, this class provides the framework for including a data-fidelity term
* based on the knowledge of the noise model. The intensity updates are then treated as the sum of
* (1) the weighted smoothing updates (weighted by SmoothingWeight) and
* (2) the weighted fidelity updates (weighted by NoiseModelFidelityWeight) that prevent large
* deviations of the denoised image from the noisy data.
*
* \ingroup Filtering
* \ingroup ITKDenoising
* \sa PatchBasedDenoisingImageFilter
*/
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT PatchBasedDenoisingBaseImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(PatchBasedDenoisingBaseImageFilter);
/** Standard class type aliases. */
using Self = PatchBasedDenoisingBaseImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(PatchBasedDenoisingBaseImageFilter);
/** Input and output image types. */
using InputImageType = TInputImage;
using OutputImageType = TOutputImage;
/** Image dimension, assumed to be the same for input and output data. */
static constexpr unsigned int ImageDimension = InputImageType::ImageDimension;
/** Type definition for the input and output pixel types.
* Output pixel type will be used in computations.
*/
using InputPixelType = typename InputImageType::PixelType;
using OutputPixelType = typename OutputImageType::PixelType;
using PixelType = OutputPixelType;
using PixelValueType = typename NumericTraits<PixelType>::ValueType;
using NoiseModelEnum = PatchBasedDenoisingBaseImageFilterEnums::NoiseModel;
using ComponentSpaceEnum = PatchBasedDenoisingBaseImageFilterEnums::ComponentSpace;
using FilterStateEnum = PatchBasedDenoisingBaseImageFilterEnums::FilterState;
#if !defined(ITK_LEGACY_REMOVE)
using NoiseModelType = PatchBasedDenoisingBaseImageFilterEnums::NoiseModel;
using ComponentSpaceType = PatchBasedDenoisingBaseImageFilterEnums::ComponentSpace;
using FilterStateType = PatchBasedDenoisingBaseImageFilterEnums::FilterState;
/**Exposes enums values for backwards compatibility*/
static constexpr NoiseModelEnum NOMODEL = NoiseModelEnum::NOMODEL;
static constexpr NoiseModelEnum GAUSSIAN = NoiseModelEnum::GAUSSIAN;
static constexpr NoiseModelEnum RICIAN = NoiseModelEnum::RICIAN;
static constexpr NoiseModelEnum POISSON = NoiseModelEnum::POISSON;
static constexpr ComponentSpaceEnum EUCLIDEAN = ComponentSpaceEnum::EUCLIDEAN;
static constexpr ComponentSpaceEnum RIEMANNIAN = ComponentSpaceEnum::RIEMANNIAN;
static constexpr FilterStateEnum UNINITIALIZED = FilterStateEnum::UNINITIALIZED;
static constexpr FilterStateEnum INITIALIZED = FilterStateEnum::INITIALIZED;
#endif
/** This data structure type is used to store the weights (mask) for pixels in a patch in order to
* make the patch more isotropic and less rectangular.
*/
using PatchWeightsType = Array<float>;
/** This data structure type is used for efficiently accessing patch values
* from the image data structure.
*/
using BoundaryConditionType = ZeroFluxNeumannBoundaryCondition<OutputImageType>;
using ListAdaptorType =
typename itk::Statistics::ImageToNeighborhoodSampleAdaptor<OutputImageType, BoundaryConditionType>;
using PatchRadiusType = typename ListAdaptorType::NeighborhoodRadiusType;
using InputImagePatchIterator = ConstNeighborhoodIterator<InputImageType, BoundaryConditionType>;
/** Set/Get the patch radius specified in physical coordinates.
* Patch radius is preferably set to an even number.
* Currently, only isotropic patches in physical space are allowed;
* patches can be anisotropic in voxel space.
*/
itkSetMacro(PatchRadius, unsigned int);
itkGetConstMacro(PatchRadius, unsigned int);
PatchRadiusType
GetPatchRadiusInVoxels() const;
PatchRadiusType
GetPatchDiameterInVoxels() const;
typename PatchRadiusType::SizeValueType
GetPatchLengthInVoxels() const;
/** Set/Get the patch weights, or mask, that make the patch more isotropic (less rectangular).
* This function allows the user to set arbitrary patch weights
* by providing a 1-D array of weights.
*/
void
SetPatchWeights(const PatchWeightsType & weights);
PatchWeightsType
GetPatchWeights() const;
/** Set/Get the noise model type.
* Defaults to NOMODEL.
* To use the noise model during denoising, NoiseModelFidelityWeight must be positive.
*/
itkSetEnumMacro(NoiseModel, NoiseModelEnum);
itkGetConstMacro(NoiseModel, NoiseModelEnum);
/** Set/Get the weight on the smoothing term.
* This option is used when a noise model is specified.
* This weight controls the balance between the smoothing and the closeness to the noisy data.
* Large step sizes may cause instabilities.
*/
itkSetClampMacro(SmoothingWeight, double, 0.0, 1.0);
itkGetConstMacro(SmoothingWeight, double);
/** Set/Get the weight on the fidelity term (penalizes deviations from the noisy data).
* This option is used when a noise model is specified.
* This weight controls the balance between the smoothing and the closeness to the noisy data.
* Use a positive weight to prevent oversmoothing.
*/
itkSetClampMacro(NoiseModelFidelityWeight, double, 0.0, 1.0);
itkGetConstMacro(NoiseModelFidelityWeight, double);
/** Set/Get flag indicating whether kernel-bandwidth should be estimated
* automatically from the image data.
* Defaults to false.
*/
itkSetMacro(KernelBandwidthEstimation, bool);
itkBooleanMacro(KernelBandwidthEstimation);
itkGetConstMacro(KernelBandwidthEstimation, bool);
/** Set/Get the update frequency for the kernel bandwidth estimation.
* An optimal bandwidth will be re-estimated
* based on the denoised image after every 'n' iterations.
* Must be a positive integer.
* Defaults to 3, i.e. bandwidth updated after every 3 denoising iteration.
*/
itkSetClampMacro(KernelBandwidthUpdateFrequency, unsigned int, 1, NumericTraits<unsigned int>::max());
itkGetConstMacro(KernelBandwidthUpdateFrequency, unsigned int);
/** Set/Get the number of denoising iterations to perform.
* Must be a positive integer.
* Defaults to 1.
*/
itkSetClampMacro(NumberOfIterations, unsigned int, 1, NumericTraits<unsigned int>::max());
itkGetConstReferenceMacro(NumberOfIterations, unsigned int);
/** Get the number of elapsed iterations of the filter. */
itkGetConstReferenceMacro(ElapsedIterations, unsigned int);
/** Set/Get flag indicating whether all components should always be treated
* as if they are in euclidean space regardless of pixel type.
* Defaults to false.
*/
itkSetMacro(AlwaysTreatComponentsAsEuclidean, bool);
itkBooleanMacro(AlwaysTreatComponentsAsEuclidean);
itkGetConstMacro(AlwaysTreatComponentsAsEuclidean, bool);
/** Set the state of the filter to INITIALIZED. */
virtual void
SetStateToInitialized();
/** Set the state of the filter to UNINITIALIZED. */
virtual void
SetStateToUninitialized();
/** Set/Get the state of the filter. */
#if !defined(ITK_WRAPPING_PARSER)
itkSetEnumMacro(State, FilterStateEnum);
itkGetConstReferenceMacro(State, FilterStateEnum);
#endif
/** Indicates whether the filter automatically resets to UNINITIALIZED state
* after completing, or whether filter must be manually reset.
* Require the filter to be manually reinitialized (by calling
* SetStateToUninitialized(). */
itkSetMacro(ManualReinitialization, bool);
itkGetConstReferenceMacro(ManualReinitialization, bool);
itkBooleanMacro(ManualReinitialization);
protected:
PatchBasedDenoisingBaseImageFilter();
~PatchBasedDenoisingBaseImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
void
GenerateInputRequestedRegion() override;
void
GenerateData() override;
virtual void
CopyInputToOutput() = 0;
/** Allocate memory and initialize patch weights. */
virtual void
InitializePatchWeights();
virtual void
Initialize()
{}
/** Allocate memory for a temporary update container in the subclass. */
virtual void
AllocateUpdateBuffer() = 0;
virtual void
PreProcessInput()
{}
virtual void
InitializeIteration()
{}
/** Automatically estimate kernel bandwidth from the image data. */
virtual void
ComputeKernelBandwidthUpdate() = 0;
/** Perform one iteration of image denoising. */
virtual void
ComputeImageUpdate() = 0;
virtual void
ApplyUpdate() = 0;
virtual void
PostProcessOutput()
{}
/** Check and indicate whether to continue iterations or stop. */
virtual bool
Halt();
virtual bool
ThreadedHalt(void * itkNotUsed(threadInfo))
{
return this->Halt();
}
itkSetMacro(ElapsedIterations, unsigned int);
/** Determine the component space based on pixel type */
ComponentSpaceEnum
DetermineComponentSpace(const RGBPixel<PixelValueType> & itkNotUsed(p))
{
return ComponentSpaceEnum::EUCLIDEAN;
}
ComponentSpaceEnum
DetermineComponentSpace(const RGBAPixel<PixelValueType> & itkNotUsed(p))
{
return ComponentSpaceEnum::EUCLIDEAN;
}
ComponentSpaceEnum
DetermineComponentSpace(const DiffusionTensor3D<PixelValueType> & itkNotUsed(p))
{
return ComponentSpaceEnum::RIEMANNIAN;
}
template <typename PixelT>
ComponentSpaceEnum
DetermineComponentSpace(const PixelT & itkNotUsed(p))
{
return ComponentSpaceEnum::EUCLIDEAN;
}
/** Set/Get the component space type. */
itkSetEnumMacro(ComponentSpace, ComponentSpaceEnum);
itkGetConstMacro(ComponentSpace, ComponentSpaceEnum);
// Cache input and output pointer to get rid of thousands of calls
// to GetInput and GetOutput.
const InputImageType * m_InputImage{};
OutputImageType * m_OutputImage{};
private:
/** Parameters that define patch size and patch weights (mask). */
unsigned int m_PatchRadius{ 4 };
PatchWeightsType m_PatchWeights{};
/** Parameters that define the strategy for kernel-bandwidth estimation. */
bool m_KernelBandwidthEstimation{ false };
unsigned int m_KernelBandwidthUpdateFrequency{ 3 };
/** Parameters that define the total number of denoising iterations to perform
* and those completed so far. */
unsigned int m_NumberOfIterations{ 1 };
unsigned int m_ElapsedIterations{ 0 };
/** Parameters defining the usage of a specific noise model, if desired. */
NoiseModelEnum m_NoiseModel{ NoiseModelEnum::NOMODEL };
double m_SmoothingWeight{ 1.0 };
double m_NoiseModelFidelityWeight{ 0.0 };
/** Parameter indicating whether components should be treated as if they are in
Euclidean space regardless of pixel type. */
bool m_AlwaysTreatComponentsAsEuclidean{ false };
ComponentSpaceEnum m_ComponentSpace{ ComponentSpaceEnum::EUCLIDEAN };
bool m_ManualReinitialization{ false };
FilterStateEnum m_State{ FilterStateEnum::UNINITIALIZED };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkPatchBasedDenoisingBaseImageFilter.hxx"
#endif
#endif
|