File: itkPatchBasedDenoisingImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (574 lines) | stat: -rw-r--r-- 22,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkPatchBasedDenoisingImageFilter_h
#define itkPatchBasedDenoisingImageFilter_h

#include "itkPatchBasedDenoisingBaseImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkVector.h"
#include "itkVectorImage.h"
#include "itkRGBPixel.h"
#include "itkRGBAPixel.h"
#include "itkDiffusionTensor3D.h"
#include "itkFixedArray.h"
#include "itkMatrix.h"
#include "itkRegionConstrainedSubsampler.h"
#include <type_traits>

#include <vector>
#include "ITKDenoisingExport.h"

namespace itk
{
/**
 * \class PatchBasedDenoisingImageFilter
 * \brief Derived class implementing a specific patch-based denoising algorithm, as detailed below.
 *
 * This class is derived from the base class PatchBasedDenoisingBaseImageFilter; please refer to the
 * documentation of the base class first. This class implements a denoising filter that uses
 * iterative non-local, or semi-local, weighted averaging of image patches for image denoising. The
 * intensity at each pixel 'p' gets updated as a weighted average of intensities of a chosen subset
 * of pixels from the image.
 *
 * This class implements the denoising algorithm using a Gaussian kernel function for nonparametric
 * density estimation. The class implements a scheme to automatically estimated the kernel bandwidth
 * parameter (namely, sigma) using leave-one-out cross validation. It implements schemes for random
 * sampling of patches non-locally (from the entire image) as well as semi-locally (from the spatial
 * proximity of the pixel being denoised at the specific point in time). It implements a specific
 * scheme for defining patch weights (mask) as described in Awate and Whitaker 2005 IEEE CVPR and
 * 2006 IEEE TPAMI.
 *
 * \ingroup Filtering
 * \ingroup ITKDenoising
 * \sa PatchBasedDenoisingBaseImageFilter
 */
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT PatchBasedDenoisingImageFilter
  : public PatchBasedDenoisingBaseImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(PatchBasedDenoisingImageFilter);

  /** Standard class type aliases. */
  using Self = PatchBasedDenoisingImageFilter;
  using Superclass = PatchBasedDenoisingBaseImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;
  using typename Superclass::OutputImagePointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(PatchBasedDenoisingImageFilter);

  /** Type definition for the input image. */
  using typename Superclass::InputImageType;
  using typename Superclass::OutputImageType;

  /** Image dimension, assumed to be the same for input and output data*/
  static constexpr unsigned int ImageDimension = Superclass::ImageDimension;

  /** Type definition for the input image region and size type. */
  using InputImageRegionType = typename InputImageType::RegionType;

  /** Type definition for the input image region iterator */
  using OutputImageRegionIteratorType = ImageRegionIterator<OutputImageType>;
  using InputImageRegionConstIteratorType = ImageRegionConstIterator<InputImageType>;

  /** Type definition for the input and output pixel types.
      Output pixel type will be used in computations. */
  using typename Superclass::PixelType;
  using typename Superclass::PixelValueType;

  using RealType = typename NumericTraits<PixelType>::RealType;
  using RealValueType = typename NumericTraits<PixelValueType>::RealType;
  using PixelArrayType = Array<PixelValueType>;
  using RealArrayType = Array<RealValueType>;
  using ShortArrayType = Array<unsigned short>;

  /** Type definition for patch weights type. */
  using typename Superclass::ListAdaptorType;
  using typename Superclass::PatchRadiusType;
  using typename Superclass::InputImagePatchIterator;
  using PatchSampleType = ListAdaptorType;
  using typename Superclass::PatchWeightsType;

  /** Type definitions for delegate classes. */
  using BaseSamplerType = itk::Statistics::RegionConstrainedSubsampler<PatchSampleType, InputImageRegionType>;
  using BaseSamplerPointer = typename BaseSamplerType::Pointer;
  using InstanceIdentifier = typename BaseSamplerType::InstanceIdentifier;

  /**
   * Type definitions for Riemannian LogMap Eigensystem.
   * Since the LogMap computations are only valid for DiffusionTensor3D
   * pixels right now which always have a dimension of 3x3.
   */
  using EigenValuesArrayType = FixedArray<PixelValueType, 3>;
  using EigenVectorsMatrixType = Matrix<PixelValueType, 3, 3>;
  using EigenValuesCacheType = std::vector<EigenValuesArrayType>;
  using EigenVectorsCacheType = std::vector<EigenVectorsMatrixType>;

  struct ThreadDataStruct
  {
    ShortArrayType        validDerivatives;
    RealArrayType         entropyFirstDerivative;
    RealArrayType         entropySecondDerivative;
    ShortArrayType        validNorms;
    RealArrayType         minNorm;
    RealArrayType         maxNorm;
    BaseSamplerPointer    sampler;
    EigenValuesCacheType  eigenValsCache;
    EigenVectorsCacheType eigenVecsCache;
  };

  /** Set/Get flag indicating whether smooth-disc patch weights should be used.
   *  If this flag is true, the smooth-disc patch weights will override any
   *  weights provided via the SetPatchWeights method.
   */
  itkSetMacro(UseSmoothDiscPatchWeights, bool);
  itkBooleanMacro(UseSmoothDiscPatchWeights);
  itkGetConstMacro(UseSmoothDiscPatchWeights, bool);

  /** Set/Get initial kernel bandwidth estimate.
   * To prevent the class from automatically modifying this estimate,
   * set KernelBandwidthEstimation to false in the base class.
   */
  void
  SetKernelBandwidthSigma(const RealArrayType & kernelSigma);
  itkGetConstMacro(KernelBandwidthSigma, RealArrayType);

  /** Set/Get the fraction of the image to use for kernel bandwidth sigma estimation.
   *  To reduce the computational burden for computing sigma,
   *  a small random fraction of the image pixels can be used.
   */
  itkSetClampMacro(KernelBandwidthFractionPixelsForEstimation, double, 0.01, 1.0);
  itkGetConstReferenceMacro(KernelBandwidthFractionPixelsForEstimation, double);

  /** Set/Get flag indicating whether conditional derivatives should be used
    estimating sigma. */
  itkSetMacro(ComputeConditionalDerivatives, bool);
  itkBooleanMacro(ComputeConditionalDerivatives);
  itkGetConstMacro(ComputeConditionalDerivatives, bool);

  /** Set/Get flag indicating whether the fast algorithm for tensor computations should be used.
   *
   *  Specifically, when this flag is true (default) or On, a faster implementation of the 3x3
   *  symmetric positive-definite eigensystem analysis will be used. See
   *  Hasan KM, Basser PJ, Parker DL, Alexander AL.
   *  Analytical computation of the eigenvalues and eigenvectors in DT-MRI.
   *  J Magn Reson 2001; 152: 41-47.
   *  This faster algorithm may be slightly less accurate and possibly less stable in the presence
   *  of noise.  So far in practice it has been shown to work well.
   *
   *  However, you may want to turn this option off if you have concerns about numerical
   *  performance.
   */
  itkSetMacro(UseFastTensorComputations, bool);
  itkBooleanMacro(UseFastTensorComputations);
  itkGetConstMacro(UseFastTensorComputations, bool);

  /** Maximum number of Newton-Raphson iterations for sigma update. */
  static constexpr unsigned int MaxSigmaUpdateIterations = 20;

  /** Set/Get the kernel bandwidth sigma multiplication factor used to modify the
   *  automatically-estimated kernel bandwidth sigma. At times, it may be desirable
   *  to modify the value of the automatically-estimated sigma.  Typically, this number
   *  isn't very far from 1.
   *  Note: This is used only when KernelBandwidthEstimation is True/On.
   */
  itkSetClampMacro(KernelBandwidthMultiplicationFactor, double, 0.01, 100);
  itkGetConstReferenceMacro(KernelBandwidthMultiplicationFactor, double);

  /** Set/Get the noise sigma.
   * Used by the noise model where appropriate, defaults to 5% of the image intensity range
   */
  void
  SetNoiseSigma(const RealType & sigma);

  itkGetConstMacro(NoiseSigma, RealType);

  /** Set/Get the class used for creating a subsample of patches. */
  itkSetObjectMacro(Sampler, BaseSamplerType);
  itkGetModifiableObjectMacro(Sampler, BaseSamplerType);

  /** Get the number of independent components of the input. */
  itkGetConstMacro(NumIndependentComponents, unsigned int);

protected:
  PatchBasedDenoisingImageFilter();
  ~PatchBasedDenoisingImageFilter() override;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Clean up Eigensystem caches */
  virtual void
  EmptyCaches();

  /** Allocate memory for a temporary update container in the subclass*/
  void
  AllocateUpdateBuffer() override;

  void
  CopyInputToOutput() override;

  void
  GenerateInputRequestedRegion() override;

  template <typename T, typename U = void>
  using DisableIfMultiComponent = typename std::enable_if<std::is_same_v<T, typename NumericTraits<T>::ValueType>, U>;

  template <typename T, typename U = void>
  using EnableIfMultiComponent = typename std::enable_if<!std::is_same_v<T, typename NumericTraits<T>::ValueType>, U>;


  /** \brief A method to generically get a component.
   *
   * The same function name can be used to generically access for
   * scalars and array-like types. For scalar types the idx parameter
   * is ignored.
   */
  template <typename T>
  typename DisableIfMultiComponent<T, T>::type
  GetComponent(const T pix, unsigned int itkNotUsed(idx)) const
  {
    // The enable if idiom is used to overload this method for both
    // scalars and multi-component types. By exploiting that
    // NumericTraits' ValueType type alias (defines the per-element type
    // for multi-component types ) is different then the parameterize
    // type, the bracket operator is used only for multi-component
    // types.
    return pix;
  }

  template <typename T>
  typename EnableIfMultiComponent<T, typename NumericTraits<T>::ValueType>::type
  GetComponent(const T & pix, unsigned int idx) const
  {
    return pix[idx];
  }

  /** \brief A method to generically set a component */
  template <typename T>
  void
  SetComponent(T &                                                      pix,
               unsigned int                                             itkNotUsed(idx),
               typename DisableIfMultiComponent<T, RealValueType>::type val) const
  {
    pix = val;
  }

  template <typename T>
  void
  SetComponent(T & pix, unsigned int idx, typename EnableIfMultiComponent<T, RealValueType>::type val) const
  {
    pix[idx] = val;
  }

  /** Compute the Minimum and Maximum pixel in the image for each independent
    component */

  void
  ComputeMinMax(const Image<DiffusionTensor3D<PixelValueType>, ImageDimension> * img)
  {
    if (this->GetComponentSpace() == Superclass::ComponentSpaceEnum::RIEMANNIAN)
    {
      DispatchedRiemannianMinMax(img);
    }
    else
    {
      DispatchedArrayMinMax(img);
    }
  }

  template <typename TImageType>
  typename DisableIfMultiComponent<typename TImageType::PixelType>::type
  ComputeMinMax(const TImageType * img)
  {
    DispatchedMinMax(img);
  }

  template <typename TImageType>
  typename EnableIfMultiComponent<typename TImageType::PixelType>::type
  ComputeMinMax(const TImageType * img)
  {
    DispatchedArrayMinMax(img);
  }

  /**
   * Compute the signed difference a-b and the weighted squared distance
   * between a and b.  Do the computation in either Euclidean or Riemannian space
   * depending on pixel type.
   * The cache is used when the first argument is repeatedly passed into
   * ComputeLogMap since the eigen analysis will already have been computed
   * for that pixel.
   */
  void
  ComputeDifferenceAndWeightedSquaredNorm(const DiffusionTensor3D<PixelValueType> & a,
                                          const DiffusionTensor3D<PixelValueType> & b,
                                          const RealArrayType &                     weight,
                                          bool                                      useCachedComputations,
                                          SizeValueType                             cacheIndex,
                                          EigenValuesCacheType &                    eigenValsCache,
                                          EigenVectorsCacheType &                   eigenVecsCache,
                                          RealType &                                diff,
                                          RealArrayType &                           norm)
  {
    if (this->GetComponentSpace() == Superclass::ComponentSpaceEnum::RIEMANNIAN)
    {
      ComputeLogMapAndWeightedSquaredGeodesicDifference(
        a, b, weight, useCachedComputations, cacheIndex, eigenValsCache, eigenVecsCache, diff, norm);
    }
    else
    {
      ComputeSignedEuclideanDifferenceAndWeightedSquaredNorm(
        a, b, weight, useCachedComputations, cacheIndex, eigenValsCache, eigenVecsCache, diff, norm);
    }
  }

  template <typename PixelT>
  void
  ComputeDifferenceAndWeightedSquaredNorm(const PixelT &          a,
                                          const PixelT &          b,
                                          const RealArrayType &   weight,
                                          bool                    useCachedComputations,
                                          SizeValueType           cacheIndex,
                                          EigenValuesCacheType &  eigenValsCache,
                                          EigenVectorsCacheType & eigenVecsCache,
                                          RealType &              diff,
                                          RealArrayType &         norm)
  {
    ComputeSignedEuclideanDifferenceAndWeightedSquaredNorm(
      a, b, weight, useCachedComputations, cacheIndex, eigenValsCache, eigenVecsCache, diff, norm);
  }

  /**
   * Update a by adding b. In Riemannian space, b is in the tangent space of a.
   */
  RealType
  AddUpdate(const DiffusionTensor3D<RealValueType> & a, const RealType & b)
  {
    if (this->GetComponentSpace() == Superclass::ComponentSpaceEnum::RIEMANNIAN)
    {
      return this->AddExponentialMapUpdate(a, b);
    }
    else
    {
      return this->AddEuclideanUpdate(a, b);
    }
  }

  template <typename RealT>
  RealType
  AddUpdate(const RealT & a, const RealType & b)
  {
    return this->AddEuclideanUpdate(a, b);
  }

  virtual void
  EnforceConstraints();

  void
  Initialize() override;

  virtual void
  InitializeKernelSigma();

  void
  InitializePatchWeights() override;

  virtual void
  InitializePatchWeightsSmoothDisc();

  void
  InitializeIteration() override;

  void
  ComputeKernelBandwidthUpdate() override; // derived from base class;

  // define here

  virtual ThreadDataStruct
  ThreadedComputeSigmaUpdate(const InputImageRegionType & regionToProcess,
                             const int                    itkNotUsed(threadId),
                             ThreadDataStruct             threadData);

  virtual RealArrayType
  ResolveSigmaUpdate();

  void
  ComputeImageUpdate() override;

  virtual ThreadDataStruct
  ThreadedComputeImageUpdate(const InputImageRegionType & regionToProcess,
                             const int                    threadId,
                             ThreadDataStruct             threadData);

  virtual RealType
  ComputeGradientJointEntropy(InstanceIdentifier                  id,
                              typename ListAdaptorType::Pointer & inList,
                              BaseSamplerPointer &                sampler,
                              ThreadDataStruct &                  threadData);

  void
  ApplyUpdate() override;

  virtual void
  ThreadedApplyUpdate(const InputImageRegionType & regionToProcess, const int itkNotUsed(threadId));

  void
  PostProcessOutput() override;

  virtual void
  SetThreadData(int threadId, const ThreadDataStruct & data);

  virtual ThreadDataStruct
  GetThreadData(int threadId);

private:
  /** This callback method uses ImageSource::SplitRequestedRegion to acquire an
   * output region that it passes to ComputeSigma for processing. */
  static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
  ComputeSigmaUpdateThreaderCallback(void * arg);

  /** This callback method uses ImageSource::SplitRequestedRegion to acquire a
   * region which it then passes to ComputeImageUpdate for processing. */
  static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
  ComputeImageUpdateThreaderCallback(void * arg);

  /** This callback method uses ImageSource::SplitRequestedRegion to acquire a
   * region which it then passes to ThreadedApplyUpdate for processing. */
  static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
  ApplyUpdateThreaderCallback(void * arg);

  template <typename TInputImageType>
  void
  DispatchedMinMax(const TInputImageType * img);

  template <typename TInputImageType>
  void
  DispatchedArrayMinMax(const TInputImageType * img);

  template <typename TInputImageType>
  void
  DispatchedVectorMinMax(const TInputImageType * img);

  template <typename TInputImageType>
  void
  DispatchedRiemannianMinMax(const TInputImageType * img);

  /** This callback method uses ImageSource::SplitRequestedRegion to acquire a
   * region which it then passes to ThreadedRiemannianMinMax for processing. */
  static ITK_THREAD_RETURN_FUNCTION_CALL_CONVENTION
  RiemannianMinMaxThreaderCallback(void * arg);

  ThreadDataStruct
  ThreadedRiemannianMinMax(const InputImageRegionType & regionToProcess,
                           const int                    itkNotUsed(threadId),
                           const InputImageType *       img,
                           ThreadDataStruct             threadData);

  virtual void
  ResolveRiemannianMinMax();

  void
  ComputeSignedEuclideanDifferenceAndWeightedSquaredNorm(const PixelType &       a,
                                                         const PixelType &       b,
                                                         const RealArrayType &   weight,
                                                         bool                    useCachedComputations,
                                                         SizeValueType           cacheIndex,
                                                         EigenValuesCacheType &  eigenValsCache,
                                                         EigenVectorsCacheType & eigenVecsCache,
                                                         RealType &              diff,
                                                         RealArrayType &         norm);

  /** Returns the Log map in the tangent space of spdMatrixA. */
  void
  ComputeLogMapAndWeightedSquaredGeodesicDifference(const DiffusionTensor3D<PixelValueType> & spdMatrixA,
                                                    const DiffusionTensor3D<PixelValueType> & spdMatrixB,
                                                    const RealArrayType &                     weight,
                                                    bool                                      useCachedComputations,
                                                    SizeValueType                             cacheIndex,
                                                    EigenValuesCacheType &                    eigenValsCache,
                                                    EigenVectorsCacheType &                   eigenVecsCache,
                                                    RealType &                                symMatrixLogMap,
                                                    RealArrayType &                           geodesicDist);

  template <typename TensorValueT>
  void
  Compute3x3EigenAnalysis(const DiffusionTensor3D<TensorValueT> & spdMatrix,
                          FixedArray<TensorValueT, 3> &           eigenVals,
                          Matrix<TensorValueT, 3, 3> &            eigenVecs);

  RealType
  AddEuclideanUpdate(const RealType & a, const RealType & b);

  /** Returns the Exp map */
  RealType
  AddExponentialMapUpdate(const DiffusionTensor3D<RealValueType> & spdMatrix,
                          const DiffusionTensor3D<RealValueType> & symMatrix);

  struct ThreadFilterStruct
  {
    PatchBasedDenoisingImageFilter * Filter;
    InputImageType *                 Img;
  };

  std::vector<ThreadDataStruct> m_ThreadData{};

  /** The buffer that holds the updates for an iteration of the algorithm. */
  typename OutputImageType::Pointer m_UpdateBuffer{};

  unsigned int m_NumPixelComponents{ 0 };
  unsigned int m_NumIndependentComponents{ 0 };
  unsigned int m_TotalNumberPixels{ 0 };

  bool m_UseSmoothDiscPatchWeights{ true };

  bool m_UseFastTensorComputations{ true };

  RealArrayType  m_KernelBandwidthSigma{};
  bool           m_KernelBandwidthSigmaIsSet{ false };
  RealArrayType  m_IntensityRescaleInvFactor{};
  PixelType      m_ZeroPixel{};
  PixelArrayType m_ImageMin{};
  PixelArrayType m_ImageMax{};
  double         m_KernelBandwidthFractionPixelsForEstimation{ 0.20 };
  bool           m_ComputeConditionalDerivatives{ false };
  double         m_MinSigma{};
  double         m_MinProbability{};
  unsigned int   m_SigmaUpdateDecimationFactor{};
  double         m_SigmaUpdateConvergenceTolerance{ 0.01 };
  ShortArrayType m_SigmaConverged{};
  double         m_KernelBandwidthMultiplicationFactor{ 1.0 };

  RealType m_NoiseSigma{};
  RealType m_NoiseSigmaSquared{};
  bool     m_NoiseSigmaIsSet{ false };

  BaseSamplerPointer                m_Sampler{};
  typename ListAdaptorType::Pointer m_SearchSpaceList{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkPatchBasedDenoisingImageFilter.hxx"
#endif

#endif