1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkExponentialDisplacementFieldImageFilter_h
#define itkExponentialDisplacementFieldImageFilter_h
#include "itkDivideImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkWarpVectorImageFilter.h"
#include "itkVectorLinearInterpolateNearestNeighborExtrapolateImageFunction.h"
#include "itkAddImageFilter.h"
namespace itk
{
/** \class ExponentialDisplacementFieldImageFilter
* \brief Computes a diffeomorphic displacement field as the Lie group
* exponential of a vector field.
*
* ExponentialDisplacementFieldImageFilter takes a 'smooth' vector field
* as input and computes the displacement field that is its exponential.
*
* Given that both the input and output displacement field are represented as
* discrete images with pixel type vector, the exponential will be only an
* estimation and will probably not correspond to a perfect exponential. The
* precision of the exponential can be improved at the price of increasing the
* computation time (number of iterations).
*
* The method used for computing the exponential displacement field is
* an iterative scaling and squaring (cf Arsigny et al., "A
* Log-Euclidean Framework for Statistics on Diffeomorphisms", MICCAI'06).
*
* \f[
* exp(\Phi) = exp( \frac{\Phi}{2^N} )^{2^N}
* \f]
*
*
* This filter expects both the input and output images to be of pixel type
* Vector.
*
* \author Tom Vercauteren, INRIA & Mauna Kea Technologies
*
* This implementation was taken from the Insight Journal paper:
* https://www.insight-journal.org/browse/publication/154
*
* \ingroup ITKDisplacementField
*/
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT ExponentialDisplacementFieldImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ExponentialDisplacementFieldImageFilter);
/** Standard class type aliases. */
using Self = ExponentialDisplacementFieldImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ExponentialDisplacementFieldImageFilter);
/** Some convenient type alias. */
using InputImageType = TInputImage;
using InputImagePointer = typename InputImageType::Pointer;
using InputImageConstPointer = typename InputImageType::ConstPointer;
using InputPixelType = typename InputImageType::PixelType;
using InputPixelRealValueType = typename InputPixelType::RealValueType;
using OutputImageType = TOutputImage;
using OutputImagePointer = typename OutputImageType::Pointer;
using OutputPixelType = typename OutputImageType::PixelType;
/** Specify the maximum number of iteration. */
itkSetMacro(MaximumNumberOfIterations, unsigned int);
itkGetConstMacro(MaximumNumberOfIterations, unsigned int);
/** If AutomaticNumberOfIterations is off, the number of iterations is
* given by MaximumNumberOfIterations. If it is on, we try to get
* the lowest good number (which may not be larger than
* MaximumNumberOfIterations ) */
itkSetMacro(AutomaticNumberOfIterations, bool);
itkGetConstMacro(AutomaticNumberOfIterations, bool);
itkBooleanMacro(AutomaticNumberOfIterations);
/** If ComputeInverse is on, the filter will compute the exponential
* of the opposite (minus) of the input vector field. The output displacement
* fields computed with ComputeInverse set to on and off respectively
* therefore represent spatial transformations that are inverses of
* each other. */
itkSetMacro(ComputeInverse, bool);
itkGetConstMacro(ComputeInverse, bool);
itkBooleanMacro(ComputeInverse);
/** Image dimension. */
static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
static constexpr unsigned int OutputImageDimension = TInputImage::ImageDimension;
static constexpr unsigned int PixelDimension = InputPixelType::Dimension;
static constexpr unsigned int OutputPixelDimension = OutputPixelType::Dimension;
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<typename OutputPixelType::ValueType>));
itkConceptMacro(SameDimensionCheck1, (Concept::SameDimension<ImageDimension, OutputImageDimension>));
itkConceptMacro(SameDimensionCheck2, (Concept::SameDimension<ImageDimension, PixelDimension>));
itkConceptMacro(SameDimensionCheck3, (Concept::SameDimension<ImageDimension, OutputPixelDimension>));
// End concept checking
#endif
protected:
ExponentialDisplacementFieldImageFilter();
~ExponentialDisplacementFieldImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/**
* GenerateData()
*/
void
GenerateData() override;
using RegionType = typename InputImageType::RegionType;
using DivideByConstantType =
DivideImageFilter<InputImageType, itk::Image<InputPixelRealValueType, ImageDimension>, OutputImageType>;
using CasterType = CastImageFilter<InputImageType, OutputImageType>;
using VectorWarperType = WarpVectorImageFilter<OutputImageType, OutputImageType, OutputImageType>;
using FieldInterpolatorType = VectorLinearInterpolateNearestNeighborExtrapolateImageFunction<OutputImageType, double>;
using AdderType = AddImageFilter<OutputImageType, OutputImageType, OutputImageType>;
using DivideByConstantPointer = typename DivideByConstantType::Pointer;
using CasterPointer = typename CasterType::Pointer;
using VectorWarperPointer = typename VectorWarperType::Pointer;
using FieldInterpolatorPointer = typename FieldInterpolatorType::Pointer;
using FieldInterpolatorOutputType = typename FieldInterpolatorType::OutputType;
using AdderPointer = typename AdderType::Pointer;
private:
bool m_AutomaticNumberOfIterations{};
unsigned int m_MaximumNumberOfIterations{};
bool m_ComputeInverse{};
DivideByConstantPointer m_Divider{};
CasterPointer m_Caster{};
VectorWarperPointer m_Warper{};
AdderPointer m_Adder{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkExponentialDisplacementFieldImageFilter.hxx"
#endif
#endif
|