File: itkExponentialDisplacementFieldImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (176 lines) | stat: -rw-r--r-- 7,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkExponentialDisplacementFieldImageFilter_h
#define itkExponentialDisplacementFieldImageFilter_h

#include "itkDivideImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkWarpVectorImageFilter.h"
#include "itkVectorLinearInterpolateNearestNeighborExtrapolateImageFunction.h"
#include "itkAddImageFilter.h"

namespace itk
{
/** \class ExponentialDisplacementFieldImageFilter
 * \brief Computes a diffeomorphic displacement field as the Lie group
 * exponential of a vector field.
 *
 * ExponentialDisplacementFieldImageFilter takes a 'smooth' vector field
 * as input and computes the displacement field that is its exponential.
 *
 * Given that both the input and output displacement field are represented as
 * discrete images with pixel type vector, the exponential will be only an
 * estimation and will probably not correspond to a perfect exponential.  The
 * precision of the exponential can be improved at the price of increasing the
 * computation time (number of iterations).
 *
 * The method used for computing the exponential displacement field is
 * an iterative scaling and squaring (cf Arsigny et al., "A
 * Log-Euclidean Framework for Statistics on Diffeomorphisms", MICCAI'06).
 *
 *    \f[
 *      exp(\Phi) = exp( \frac{\Phi}{2^N} )^{2^N}
 *    \f]
 *
 *
 * This filter expects both the input and output images to be of pixel type
 * Vector.
 *
 * \author Tom Vercauteren, INRIA & Mauna Kea Technologies
 *
 * This implementation was taken from the Insight Journal paper:
 * https://www.insight-journal.org/browse/publication/154
 *
 * \ingroup ITKDisplacementField
 */
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT ExponentialDisplacementFieldImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ExponentialDisplacementFieldImageFilter);

  /** Standard class type aliases. */
  using Self = ExponentialDisplacementFieldImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(ExponentialDisplacementFieldImageFilter);

  /** Some convenient type alias. */
  using InputImageType = TInputImage;
  using InputImagePointer = typename InputImageType::Pointer;
  using InputImageConstPointer = typename InputImageType::ConstPointer;
  using InputPixelType = typename InputImageType::PixelType;
  using InputPixelRealValueType = typename InputPixelType::RealValueType;

  using OutputImageType = TOutputImage;
  using OutputImagePointer = typename OutputImageType::Pointer;
  using OutputPixelType = typename OutputImageType::PixelType;

  /** Specify the maximum number of iteration. */
  itkSetMacro(MaximumNumberOfIterations, unsigned int);
  itkGetConstMacro(MaximumNumberOfIterations, unsigned int);

  /** If AutomaticNumberOfIterations is off, the number of iterations is
   * given by MaximumNumberOfIterations. If it is on, we try to get
   * the lowest good number (which may not be larger than
   * MaximumNumberOfIterations ) */
  itkSetMacro(AutomaticNumberOfIterations, bool);
  itkGetConstMacro(AutomaticNumberOfIterations, bool);
  itkBooleanMacro(AutomaticNumberOfIterations);

  /** If ComputeInverse is on, the filter will compute the exponential
   * of the opposite (minus) of the input vector field. The output displacement
   * fields computed with ComputeInverse set to on and off respectively
   * therefore represent spatial transformations that are inverses of
   * each other. */
  itkSetMacro(ComputeInverse, bool);
  itkGetConstMacro(ComputeInverse, bool);
  itkBooleanMacro(ComputeInverse);

  /** Image dimension. */
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
  static constexpr unsigned int OutputImageDimension = TInputImage::ImageDimension;
  static constexpr unsigned int PixelDimension = InputPixelType::Dimension;
  static constexpr unsigned int OutputPixelDimension = OutputPixelType::Dimension;

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<typename OutputPixelType::ValueType>));
  itkConceptMacro(SameDimensionCheck1, (Concept::SameDimension<ImageDimension, OutputImageDimension>));
  itkConceptMacro(SameDimensionCheck2, (Concept::SameDimension<ImageDimension, PixelDimension>));
  itkConceptMacro(SameDimensionCheck3, (Concept::SameDimension<ImageDimension, OutputPixelDimension>));
  // End concept checking
#endif

protected:
  ExponentialDisplacementFieldImageFilter();
  ~ExponentialDisplacementFieldImageFilter() override = default;

  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /**
   * GenerateData()
   */
  void
  GenerateData() override;

  using RegionType = typename InputImageType::RegionType;

  using DivideByConstantType =
    DivideImageFilter<InputImageType, itk::Image<InputPixelRealValueType, ImageDimension>, OutputImageType>;

  using CasterType = CastImageFilter<InputImageType, OutputImageType>;

  using VectorWarperType = WarpVectorImageFilter<OutputImageType, OutputImageType, OutputImageType>;

  using FieldInterpolatorType = VectorLinearInterpolateNearestNeighborExtrapolateImageFunction<OutputImageType, double>;

  using AdderType = AddImageFilter<OutputImageType, OutputImageType, OutputImageType>;

  using DivideByConstantPointer = typename DivideByConstantType::Pointer;
  using CasterPointer = typename CasterType::Pointer;
  using VectorWarperPointer = typename VectorWarperType::Pointer;
  using FieldInterpolatorPointer = typename FieldInterpolatorType::Pointer;
  using FieldInterpolatorOutputType = typename FieldInterpolatorType::OutputType;
  using AdderPointer = typename AdderType::Pointer;

private:
  bool         m_AutomaticNumberOfIterations{};
  unsigned int m_MaximumNumberOfIterations{};

  bool m_ComputeInverse{};

  DivideByConstantPointer m_Divider{};
  CasterPointer           m_Caster{};
  VectorWarperPointer     m_Warper{};
  AdderPointer            m_Adder{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkExponentialDisplacementFieldImageFilter.hxx"
#endif

#endif