1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkExponentialDisplacementFieldImageFilter_hxx
#define itkExponentialDisplacementFieldImageFilter_hxx
#include "itkProgressReporter.h"
#include "itkImageRegionConstIterator.h"
namespace itk
{
/**
* Initialize new instance
*/
template <typename TInputImage, typename TOutputImage>
ExponentialDisplacementFieldImageFilter<TInputImage, TOutputImage>::ExponentialDisplacementFieldImageFilter()
{
m_AutomaticNumberOfIterations = true;
m_MaximumNumberOfIterations = 20;
m_ComputeInverse = false;
m_Divider = DivideByConstantType::New();
m_Caster = CasterType::New();
m_Warper = VectorWarperType::New();
FieldInterpolatorPointer VectorInterpolator = FieldInterpolatorType::New();
m_Warper->SetInterpolator(VectorInterpolator);
m_Adder = AdderType::New();
m_Adder->InPlaceOn();
}
/**
* Print out a description of self
*
* \todo Add details about this class
*/
template <typename TInputImage, typename TOutputImage>
void
ExponentialDisplacementFieldImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "AutomaticNumberOfIterations: " << m_AutomaticNumberOfIterations << std::endl;
os << indent << "MaximumNumberOfIterations: " << m_MaximumNumberOfIterations << std::endl;
os << indent << "ComputeInverse: " << (m_ComputeInverse ? "On" : "Off") << std::endl;
}
/**
* GenerateData
*/
template <typename TInputImage, typename TOutputImage>
void
ExponentialDisplacementFieldImageFilter<TInputImage, TOutputImage>::GenerateData()
{
itkDebugMacro("Actually executing");
InputImageConstPointer inputPtr = this->GetInput();
unsigned int numiter = 0;
if (m_AutomaticNumberOfIterations)
{
// Compute a good number of iterations based on the rationale
// that the initial first order approximation,
// exp(Phi/2^N) = Phi/2^N,
// needs to be diffeomorphic. For this we simply impose to have
// max(norm(Phi)/2^N) < 0.5*pixelspacing
InputPixelRealValueType maxnorm2 = 0.0;
double minpixelspacing = inputPtr->GetSpacing()[0];
for (unsigned int i = 1; i < Self::ImageDimension; ++i)
{
if (inputPtr->GetSpacing()[i] < minpixelspacing)
{
minpixelspacing = inputPtr->GetSpacing()[i];
}
}
using InputConstIterator = ImageRegionConstIterator<InputImageType>;
InputConstIterator InputIt(inputPtr, inputPtr->GetRequestedRegion());
for (InputIt.GoToBegin(); !InputIt.IsAtEnd(); ++InputIt)
{
InputPixelRealValueType norm2 = InputIt.Get().GetSquaredNorm();
if (norm2 > maxnorm2)
{
maxnorm2 = norm2;
}
}
// Divide the norm by the minimum pixel spacing
maxnorm2 /= itk::Math::sqr(minpixelspacing);
// Protect against maxnorm2 being zero.
InputPixelRealValueType numiterfloat = (maxnorm2 > 0) ? 2.0 + 0.5 * std::log(maxnorm2) / itk::Math::ln2
: itk::NumericTraits<InputPixelRealValueType>::min();
if (numiterfloat >= 0.0)
{
// take the ceil and threshold
numiter = std::min(static_cast<unsigned int>(numiterfloat + 1.0), m_MaximumNumberOfIterations);
}
else
{
// numiter will keep the zero to which it was initialized
}
}
else
{
numiter = m_MaximumNumberOfIterations;
}
ProgressReporter progress(this, 0, numiter + 1, numiter + 1);
if (numiter == 0)
{
if (!this->m_ComputeInverse)
{
m_Caster->SetInput(inputPtr);
m_Caster->GraftOutput(this->GetOutput());
m_Caster->Update();
// Region passing stuff
this->GraftOutput(m_Caster->GetOutput());
}
else
{
// We only need the opposite. Here we use the
// divider for simplicity. If a filter appears in ITK
// to compute the opposite, we should use it.
m_Divider->SetInput(inputPtr);
m_Divider->SetInput2(static_cast<InputPixelRealValueType>(-1));
m_Divider->GraftOutput(this->GetOutput());
m_Divider->Update();
// Region passing stuff
this->GraftOutput(m_Divider->GetOutput());
}
this->GetOutput()->Modified();
progress.CompletedPixel();
return;
}
// Get the first order approximation (division by 2^numiter)
m_Divider->SetInput(inputPtr);
m_Divider->GraftOutput(this->GetOutput());
if (!this->m_ComputeInverse)
{
m_Divider->SetInput2(static_cast<InputPixelRealValueType>(1 << numiter));
}
else
{
m_Divider->SetInput2(-static_cast<InputPixelRealValueType>(1 << numiter));
}
m_Divider->Update();
// Region passing stuff
this->GraftOutput(m_Divider->GetOutput());
this->GetOutput()->Modified();
progress.CompletedPixel();
// Do the iterative composition of the vector field
m_Warper->SetOutputOrigin(inputPtr->GetOrigin());
m_Warper->SetOutputSpacing(inputPtr->GetSpacing());
m_Warper->SetOutputDirection(inputPtr->GetDirection());
for (unsigned int i = 0; i < numiter; ++i)
{
m_Warper->SetInput(this->GetOutput());
m_Warper->SetDisplacementField(this->GetOutput());
m_Warper->GetOutput()->SetRequestedRegion(this->GetOutput()->GetRequestedRegion());
m_Warper->Update();
OutputImagePointer warpedIm = m_Warper->GetOutput();
warpedIm->DisconnectPipeline();
// Remember we chose to use an inplace adder
m_Adder->SetInput1(this->GetOutput());
m_Adder->SetInput2(warpedIm);
m_Adder->GetOutput()->SetRequestedRegion(this->GetOutput()->GetRequestedRegion());
m_Adder->Update();
// Region passing stuff
this->GraftOutput(m_Adder->GetOutput());
// Make a call to modified. This seems only necessary for
// a non-inplace adder but it doesn't hurt anyhow.
this->GetOutput()->Modified();
progress.CompletedPixel();
}
}
} // end namespace itk
#endif
|