File: itkExponentialDisplacementFieldImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (216 lines) | stat: -rw-r--r-- 6,578 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkExponentialDisplacementFieldImageFilter_hxx
#define itkExponentialDisplacementFieldImageFilter_hxx

#include "itkProgressReporter.h"
#include "itkImageRegionConstIterator.h"

namespace itk
{
/**
 * Initialize new instance
 */
template <typename TInputImage, typename TOutputImage>
ExponentialDisplacementFieldImageFilter<TInputImage, TOutputImage>::ExponentialDisplacementFieldImageFilter()
{
  m_AutomaticNumberOfIterations = true;
  m_MaximumNumberOfIterations = 20;
  m_ComputeInverse = false;
  m_Divider = DivideByConstantType::New();
  m_Caster = CasterType::New();
  m_Warper = VectorWarperType::New();

  FieldInterpolatorPointer VectorInterpolator = FieldInterpolatorType::New();
  m_Warper->SetInterpolator(VectorInterpolator);

  m_Adder = AdderType::New();
  m_Adder->InPlaceOn();
}

/**
 * Print out a description of self
 *
 * \todo Add details about this class
 */
template <typename TInputImage, typename TOutputImage>
void
ExponentialDisplacementFieldImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "AutomaticNumberOfIterations: " << m_AutomaticNumberOfIterations << std::endl;
  os << indent << "MaximumNumberOfIterations:   " << m_MaximumNumberOfIterations << std::endl;
  os << indent << "ComputeInverse:   " << (m_ComputeInverse ? "On" : "Off") << std::endl;
}

/**
 * GenerateData
 */
template <typename TInputImage, typename TOutputImage>
void
ExponentialDisplacementFieldImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  itkDebugMacro("Actually executing");

  InputImageConstPointer inputPtr = this->GetInput();

  unsigned int numiter = 0;

  if (m_AutomaticNumberOfIterations)
  {
    // Compute a good number of iterations based on the rationale
    // that the initial first order approximation,
    // exp(Phi/2^N) = Phi/2^N,
    // needs to be diffeomorphic. For this we simply impose to have
    // max(norm(Phi)/2^N) < 0.5*pixelspacing

    InputPixelRealValueType maxnorm2 = 0.0;

    double minpixelspacing = inputPtr->GetSpacing()[0];
    for (unsigned int i = 1; i < Self::ImageDimension; ++i)
    {
      if (inputPtr->GetSpacing()[i] < minpixelspacing)
      {
        minpixelspacing = inputPtr->GetSpacing()[i];
      }
    }

    using InputConstIterator = ImageRegionConstIterator<InputImageType>;
    InputConstIterator InputIt(inputPtr, inputPtr->GetRequestedRegion());

    for (InputIt.GoToBegin(); !InputIt.IsAtEnd(); ++InputIt)
    {
      InputPixelRealValueType norm2 = InputIt.Get().GetSquaredNorm();
      if (norm2 > maxnorm2)
      {
        maxnorm2 = norm2;
      }
    }

    // Divide the norm by the minimum pixel spacing
    maxnorm2 /= itk::Math::sqr(minpixelspacing);

    // Protect against maxnorm2 being zero.
    InputPixelRealValueType numiterfloat = (maxnorm2 > 0) ? 2.0 + 0.5 * std::log(maxnorm2) / itk::Math::ln2
                                                          : itk::NumericTraits<InputPixelRealValueType>::min();

    if (numiterfloat >= 0.0)
    {
      // take the ceil and threshold
      numiter = std::min(static_cast<unsigned int>(numiterfloat + 1.0), m_MaximumNumberOfIterations);
    }
    else
    {
      // numiter will keep the zero to which it was initialized
    }
  }
  else
  {
    numiter = m_MaximumNumberOfIterations;
  }

  ProgressReporter progress(this, 0, numiter + 1, numiter + 1);

  if (numiter == 0)
  {
    if (!this->m_ComputeInverse)
    {
      m_Caster->SetInput(inputPtr);
      m_Caster->GraftOutput(this->GetOutput());
      m_Caster->Update();
      // Region passing stuff
      this->GraftOutput(m_Caster->GetOutput());
    }
    else
    {
      // We only need the opposite. Here we use the
      // divider for simplicity. If a filter appears in ITK
      // to compute the opposite, we should use it.
      m_Divider->SetInput(inputPtr);
      m_Divider->SetInput2(static_cast<InputPixelRealValueType>(-1));
      m_Divider->GraftOutput(this->GetOutput());
      m_Divider->Update();
      // Region passing stuff
      this->GraftOutput(m_Divider->GetOutput());
    }

    this->GetOutput()->Modified();

    progress.CompletedPixel();
    return;
  }

  // Get the first order approximation (division by 2^numiter)
  m_Divider->SetInput(inputPtr);
  m_Divider->GraftOutput(this->GetOutput());
  if (!this->m_ComputeInverse)
  {
    m_Divider->SetInput2(static_cast<InputPixelRealValueType>(1 << numiter));
  }
  else
  {
    m_Divider->SetInput2(-static_cast<InputPixelRealValueType>(1 << numiter));
  }

  m_Divider->Update();

  // Region passing stuff
  this->GraftOutput(m_Divider->GetOutput());
  this->GetOutput()->Modified();

  progress.CompletedPixel();

  // Do the iterative composition of the vector field
  m_Warper->SetOutputOrigin(inputPtr->GetOrigin());
  m_Warper->SetOutputSpacing(inputPtr->GetSpacing());
  m_Warper->SetOutputDirection(inputPtr->GetDirection());

  for (unsigned int i = 0; i < numiter; ++i)
  {
    m_Warper->SetInput(this->GetOutput());
    m_Warper->SetDisplacementField(this->GetOutput());

    m_Warper->GetOutput()->SetRequestedRegion(this->GetOutput()->GetRequestedRegion());

    m_Warper->Update();

    OutputImagePointer warpedIm = m_Warper->GetOutput();
    warpedIm->DisconnectPipeline();

    // Remember we chose to use an inplace adder
    m_Adder->SetInput1(this->GetOutput());

    m_Adder->SetInput2(warpedIm);
    m_Adder->GetOutput()->SetRequestedRegion(this->GetOutput()->GetRequestedRegion());

    m_Adder->Update();

    // Region passing stuff
    this->GraftOutput(m_Adder->GetOutput());

    // Make a call to modified. This seems only necessary for
    // a non-inplace adder but it doesn't hurt anyhow.
    this->GetOutput()->Modified();

    progress.CompletedPixel();
  }
}
} // end namespace itk

#endif