1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkIterativeInverseDisplacementFieldImageFilter_h
#define itkIterativeInverseDisplacementFieldImageFilter_h
#include "itkWarpVectorImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkTimeProbe.h"
namespace itk
{
/** \class IterativeInverseDisplacementFieldImageFilter
* \brief Computes the inverse of a displacement field.
*
* IterativeInverseDisplacementFieldImageFilter takes a displacement field as input and
* computes the displacement field that is its inverse. If the input displacement
* field was mapping coordinates from a space A into a space B, the output of
* this filter will map coordinates from the space B into the space A.
*
* The algorithm implemented in this filter uses an iterative method for
* progressively refining the values of the inverse field. Starting from the
* direct field, at every pixel the direct mapping of this point is found, and
* a the negative of the current displacement is stored in the inverse field at
* the nearest pixel. Then, subsequent iterations verify if any of the neighbor pixels
* provide a better return to the current pixel, in which case its value is taken for
* updating the vector in the inverse field.
*
* This method was discussed in the users-list during February 2004.
*
* \author Corinne Mattmann
*
* \ingroup ITKDisplacementField
*/
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT IterativeInverseDisplacementFieldImageFilter
: public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(IterativeInverseDisplacementFieldImageFilter);
/** Standard class type aliases. */
using Self = IterativeInverseDisplacementFieldImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(IterativeInverseDisplacementFieldImageFilter);
/** Some type alias. */
using InputImageType = TInputImage;
using InputImageConstPointer = typename InputImageType::ConstPointer;
using InputImagePointer = typename InputImageType::Pointer;
using InputImagePointType = typename InputImageType::PointType;
using InputImageRegionType = typename InputImageType::RegionType;
using InputImageSpacingType = typename InputImageType::SpacingType;
using OutputImageType = TOutputImage;
using OutputImagePointer = typename OutputImageType::Pointer;
using OutputImagePixelType = typename OutputImageType::PixelType;
using OutputImagePointType = typename OutputImageType::PointType;
using OutputImageIndexType = typename OutputImageType::IndexType;
using OutputImageValueType = typename OutputImagePixelType::ValueType;
using TimeType = TimeProbe;
using InputConstIterator = ImageRegionConstIterator<InputImageType>;
using InputIterator = ImageRegionIterator<InputImageType>;
using OutputIterator = ImageRegionIterator<OutputImageType>;
using VectorWarperType = WarpVectorImageFilter<TOutputImage, TInputImage, TOutputImage>;
using FieldInterpolatorType = VectorLinearInterpolateImageFunction<TInputImage, double>;
using FieldInterpolatorPointer = typename FieldInterpolatorType::Pointer;
using FieldInterpolatorOutputType = typename FieldInterpolatorType::OutputType;
itkSetMacro(NumberOfIterations, unsigned int);
itkGetConstMacro(NumberOfIterations, unsigned int);
// If the error (in mm) between forward and backward mapping is smaller than
// the StopValue,
// the algorithm stops.
// This value can be used to speed up the calculation.
itkSetMacro(StopValue, double);
itkGetConstMacro(StopValue, double);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<OutputImageValueType>));
itkConceptMacro(SameDimensionCheck,
(Concept::SameDimension<TInputImage::ImageDimension, TOutputImage::ImageDimension>));
// End concept checking
#endif
protected:
IterativeInverseDisplacementFieldImageFilter();
~IterativeInverseDisplacementFieldImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
void
GenerateData() override;
unsigned int m_NumberOfIterations{};
double m_StopValue{};
double m_Time{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkIterativeInverseDisplacementFieldImageFilter.hxx"
#endif
#endif
|