File: itkIterativeInverseDisplacementFieldImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (256 lines) | stat: -rw-r--r-- 8,626 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkIterativeInverseDisplacementFieldImageFilter_hxx
#define itkIterativeInverseDisplacementFieldImageFilter_hxx

#include "itkProgressReporter.h"
#include "itkMath.h"

namespace itk
{
//----------------------------------------------------------------------------
// Constructor
template <typename TInputImage, typename TOutputImage>
IterativeInverseDisplacementFieldImageFilter<TInputImage, TOutputImage>::IterativeInverseDisplacementFieldImageFilter()
{
  m_NumberOfIterations = 5;
  m_StopValue = 0;
  m_Time = 0;
}

//----------------------------------------------------------------------------
template <typename TInputImage, typename TOutputImage>
void
IterativeInverseDisplacementFieldImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  const unsigned int ImageDimension = InputImageType::ImageDimension;
  TimeType           time;

  time.Start(); // time measurement

  InputImageConstPointer inputPtr = this->GetInput(0);
  OutputImagePointer     outputPtr = this->GetOutput(0);

  // some checks
  if (inputPtr.IsNull())
  {
    itkExceptionMacro("\n Input is missing.");
  }

  // calculate a first guess
  // (calculate negative displacement field and apply it to itself)
  InputImagePointer negField = InputImageType::New();
  negField->SetRegions(inputPtr->GetLargestPossibleRegion());
  negField->SetOrigin(inputPtr->GetOrigin());
  negField->SetSpacing(inputPtr->GetSpacing());
  negField->SetDirection(inputPtr->GetDirection());
  negField->Allocate();

  InputConstIterator InputIt(inputPtr, inputPtr->GetRequestedRegion());

  for (InputIterator negImageIt(negField, negField->GetRequestedRegion()); !negImageIt.IsAtEnd(); ++negImageIt)
  {
    negImageIt.Set(-InputIt.Get());
    ++InputIt;
  }

  outputPtr->SetRegions(inputPtr->GetRequestedRegion());
  outputPtr->SetOrigin(inputPtr->GetOrigin());
  outputPtr->SetSpacing(inputPtr->GetSpacing());
  outputPtr->SetDirection(inputPtr->GetDirection());
  outputPtr->Allocate();

  auto vectorWarper = VectorWarperType::New();
  auto VectorInterpolator = FieldInterpolatorType::New();
  vectorWarper->SetInput(negField);
  vectorWarper->SetInterpolator(VectorInterpolator);
  vectorWarper->SetOutputOrigin(inputPtr->GetOrigin());
  vectorWarper->SetOutputSpacing(inputPtr->GetSpacing());
  vectorWarper->SetOutputDirection(inputPtr->GetDirection());
  vectorWarper->SetDisplacementField(negField);
  vectorWarper->GraftOutput(outputPtr);
  vectorWarper->UpdateLargestPossibleRegion();

  // If the number of iterations is zero, just output the first guess
  // (negative deformable field applied to itself)
  if (m_NumberOfIterations == 0)
  {
    this->GraftOutput(vectorWarper->GetOutput());
  }
  else
  {
    // calculate the inverted field
    InputImagePointType         mappedPoint, newPoint;
    OutputImagePointType        originalPoint;
    OutputImageIndexType        index;
    OutputImagePixelType        displacement, outputValue;
    FieldInterpolatorOutputType forwardVector;
    double                      spacing = inputPtr->GetSpacing()[0];
    double                      smallestError = 0;
    int                         stillSamePoint;
    InputImageRegionType        region = inputPtr->GetLargestPossibleRegion();
    unsigned int                numberOfPoints = 1;
    for (unsigned int i = 0; i < ImageDimension; ++i)
    {
      numberOfPoints *= region.GetSize()[i];
    }

    ProgressReporter         progress(this, 0, inputPtr->GetLargestPossibleRegion().GetNumberOfPixels());
    OutputIterator           OutputIt(outputPtr, outputPtr->GetRequestedRegion());
    FieldInterpolatorPointer inputFieldInterpolator = FieldInterpolatorType::New();
    inputFieldInterpolator->SetInputImage(inputPtr);

    InputIt.GoToBegin();
    OutputIt.GoToBegin();
    while (!OutputIt.IsAtEnd())
    {
      // get the output image index
      index = OutputIt.GetIndex();
      outputPtr->TransformIndexToPhysicalPoint(index, originalPoint);

      stillSamePoint = 0;
      double step = spacing;

      // get the required displacement
      displacement = OutputIt.Get();

      // compute the required input image point
      for (unsigned int j = 0; j < ImageDimension; ++j)
      {
        mappedPoint[j] = originalPoint[j] + displacement[j];
        newPoint[j] = mappedPoint[j];
      }

      // calculate the error of the last iteration
      if (inputFieldInterpolator->IsInsideBuffer(mappedPoint))
      {
        forwardVector = inputFieldInterpolator->Evaluate(mappedPoint);

        smallestError = 0;
        for (unsigned int j = 0; j < ImageDimension; ++j)
        {
          smallestError += std::pow(mappedPoint[j] + forwardVector[j] - originalPoint[j], 2);
        }
        smallestError = std::sqrt(smallestError);
      }

      // iteration loop
      for (unsigned int i = 0; i < m_NumberOfIterations; ++i)
      {
        double tmp;

        if (stillSamePoint)
        {
          step = step / 2;
        }

        for (unsigned int k = 0; k < ImageDimension; ++k)
        {
          mappedPoint[k] += step;
          if (inputFieldInterpolator->IsInsideBuffer(mappedPoint))
          {
            forwardVector = inputFieldInterpolator->Evaluate(mappedPoint);
            tmp = 0;
            for (unsigned int l = 0; l < ImageDimension; ++l)
            {
              tmp += std::pow(mappedPoint[l] + forwardVector[l] - originalPoint[l], 2);
            }
            tmp = std::sqrt(tmp);
            if (tmp < smallestError)
            {
              smallestError = tmp;
              for (unsigned int l = 0; l < ImageDimension; ++l)
              {
                newPoint[l] = mappedPoint[l];
              }
            }
          }

          mappedPoint[k] -= 2 * step;
          if (inputFieldInterpolator->IsInsideBuffer(mappedPoint))
          {
            forwardVector = inputFieldInterpolator->Evaluate(mappedPoint);
            tmp = 0;
            for (unsigned int l = 0; l < ImageDimension; ++l)
            {
              tmp += std::pow(mappedPoint[l] + forwardVector[l] - originalPoint[l], 2);
            }
            tmp = std::sqrt(tmp);
            if (tmp < smallestError)
            {
              smallestError = tmp;
              for (unsigned int l = 0; l < ImageDimension; ++l)
              {
                newPoint[l] = mappedPoint[l];
              }
            }
          }

          mappedPoint[k] += step;
        } // end for loop over image dimension

        stillSamePoint = 1;
        for (unsigned int j = 0; j < ImageDimension; ++j)
        {
          if (Math::NotExactlyEquals(newPoint[j], mappedPoint[j]))
          {
            stillSamePoint = 0;
          }
          mappedPoint[j] = newPoint[j];
        }

        if (smallestError < m_StopValue)
        {
          break;
        }
      } // end iteration loop

      for (unsigned int k = 0; k < ImageDimension; ++k)
      {
        outputValue[k] = static_cast<OutputImageValueType>(mappedPoint[k] - originalPoint[k]);
      }

      OutputIt.Set(outputValue);

      ++InputIt;
      ++OutputIt;

      progress.CompletedPixel();
    } // end while loop
  }   // end else

  time.Stop();
  m_Time = time.GetMean();
}

//----------------------------------------------------------------------------
template <typename TInputImage, typename TOutputImage>
void
IterativeInverseDisplacementFieldImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os,
                                                                                   Indent         indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Number of iterations: " << m_NumberOfIterations << std::endl;
  os << indent << "Stop value:           " << m_StopValue << " mm" << std::endl;
  os << indent << "Elapsed time:         " << m_Time << " sec" << std::endl;
  os << std::endl;
}
} // end namespace itk

#endif