1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkTimeVaryingVelocityFieldIntegrationImageFilter_h
#define itkTimeVaryingVelocityFieldIntegrationImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkVectorInterpolateImageFunction.h"
namespace itk
{
/**
* \class TimeVaryingVelocityFieldIntegrationImageFilter
* \brief Integrate a time-varying velocity field using 4th order Runge-Kutta.
*
* Diffeomorphisms are topology-preserving mappings that are useful for
* describing biologically plausible deformations. Mathematically, a
* diffeomorphism, \f$ \phi \f$, is generated from a time-varying velocity field, v, as
* described by the integral equation:
*
* \f[
* \phi(t_b) = \phi(t_a) + \int_{t_a}^{t_b} v(\phi(t),t) dt
* \f]
*
* In this class, the input is the time-varying velocity field and an initial
* diffeomorphism. The output diffeomorphism is produced using fourth order
* Runge-Kutta.
*
* \warning The output deformation field needs to have dimensionality of 1
* less than the input time-varying velocity field.
*
* \author Nick Tustison
* \author Brian Avants
*
* \ingroup ITKDisplacementField
*/
template <typename TTimeVaryingVelocityField,
typename TDisplacementField =
Image<typename TTimeVaryingVelocityField::PixelType, TTimeVaryingVelocityField::ImageDimension - 1>>
class ITK_TEMPLATE_EXPORT TimeVaryingVelocityFieldIntegrationImageFilter
: public ImageToImageFilter<TTimeVaryingVelocityField, TDisplacementField>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(TimeVaryingVelocityFieldIntegrationImageFilter);
using Self = TimeVaryingVelocityFieldIntegrationImageFilter;
using Superclass = ImageToImageFilter<TTimeVaryingVelocityField, TDisplacementField>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(TimeVaryingVelocityFieldIntegrationImageFilter);
/**
* Dimensionality of input data is assumed to be one more than the output
* data the same. */
static constexpr unsigned int InputImageDimension = TTimeVaryingVelocityField::ImageDimension;
static constexpr unsigned int OutputImageDimension = TDisplacementField::ImageDimension;
using TimeVaryingVelocityFieldType = TTimeVaryingVelocityField;
using DisplacementFieldType = TDisplacementField;
using DisplacementFieldPointer = typename DisplacementFieldType::Pointer;
using VectorType = typename DisplacementFieldType::PixelType;
using RealType = typename VectorType::RealValueType;
using ScalarType = typename VectorType::ValueType;
using PointType = typename DisplacementFieldType::PointType;
using OutputRegionType = typename DisplacementFieldType::RegionType;
using VelocityFieldInterpolatorType = VectorInterpolateImageFunction<TimeVaryingVelocityFieldType, ScalarType>;
using VelocityFieldInterpolatorPointer = typename VelocityFieldInterpolatorType::Pointer;
using DisplacementFieldInterpolatorType = VectorInterpolateImageFunction<DisplacementFieldType, ScalarType>;
using DisplacementFieldInterpolatorPointer = typename DisplacementFieldInterpolatorType::Pointer;
/** Get/Set the time-varying velocity field interpolator. Default = linear. */
itkSetObjectMacro(VelocityFieldInterpolator, VelocityFieldInterpolatorType);
itkGetModifiableObjectMacro(VelocityFieldInterpolator, VelocityFieldInterpolatorType);
/**
* Get/Set the deformation field interpolator for the initial diffeomorphism
* (if set). Default = linear.
*/
itkSetObjectMacro(DisplacementFieldInterpolator, DisplacementFieldInterpolatorType);
itkGetModifiableObjectMacro(DisplacementFieldInterpolator, DisplacementFieldInterpolatorType);
/**
* Get/Set the initial diffeomorphism
*/
itkSetObjectMacro(InitialDiffeomorphism, DisplacementFieldType);
itkGetModifiableObjectMacro(InitialDiffeomorphism, DisplacementFieldType);
/**
* Set the lower time bound defining the integration domain of the transform.
* We assume that the total possible time domain is [0,1].
*/
itkSetClampMacro(LowerTimeBound, RealType, 0, 1);
/**
* Get the lower time bound defining the integration domain of the transform.
* We assume that the total possible time domain is [0,1].
*/
itkGetConstMacro(LowerTimeBound, RealType);
/**
* Set the upper time bound defining the integration domain of the transform.
* We assume that the total possible time domain is [0,1].
*/
itkSetClampMacro(UpperTimeBound, RealType, 0, 1);
/**
* Get the upper time bound defining the integration domain of the transform.
* We assume that the total possible time domain is [0,1].
*/
itkGetConstMacro(UpperTimeBound, RealType);
/**
* Set the number of integration steps used in the Runge-Kutta solution of the
* initial value problem. Default = 10.
*/
itkSetMacro(NumberOfIntegrationSteps, unsigned int);
/**
* Get the number of integration steps used in the Runge-Kutta solution of the
* initial value problem. Default = 10.
*/
itkGetConstMacro(NumberOfIntegrationSteps, unsigned int);
/**
* Get/Set a flag to interpret LowerTimeBound and UpperTimeBound as rates
* in the velocity field time span. This is equivalent to consider that the velocity
* field is defined in the normalized time interval [0, 1], ignoring the input origin
* and spacing in the temporal dimension.
*
* The default is true for backwards compatibility.
*/
itkSetMacro(TimeBoundsAsRates, bool);
itkGetConstMacro(TimeBoundsAsRates, bool);
itkBooleanMacro(TimeBoundsAsRates);
protected:
TimeVaryingVelocityFieldIntegrationImageFilter();
~TimeVaryingVelocityFieldIntegrationImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
void
GenerateOutputInformation() override;
void
BeforeThreadedGenerateData() override;
void
DynamicThreadedGenerateData(const OutputRegionType &) override;
VectorType
IntegrateVelocityAtPoint(const PointType & initialSpatialPoint, const TimeVaryingVelocityFieldType * inputField);
RealType m_LowerTimeBound{};
RealType m_UpperTimeBound{};
DisplacementFieldPointer m_InitialDiffeomorphism{};
unsigned int m_NumberOfIntegrationSteps{};
unsigned int m_NumberOfTimePoints{};
DisplacementFieldInterpolatorPointer m_DisplacementFieldInterpolator{};
bool m_TimeBoundsAsRates{ true };
private:
VelocityFieldInterpolatorPointer m_VelocityFieldInterpolator{};
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkTimeVaryingVelocityFieldIntegrationImageFilter.hxx"
#endif
#endif
|