1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkExponentialDisplacementFieldImageFilter.h"
#include "itkTestingMacros.h"
#include "vnl/vnl_random.h"
int
itkExponentialDisplacementFieldImageFilterTest(int, char *[])
{
// Define the dimension of the images
constexpr unsigned int ImageDimension = 3;
using PixelType = itk::Vector<double, ImageDimension>;
// Declare the types of the images
using ImageType = itk::Image<PixelType, ImageDimension>;
// Declare Iterator types apropriated for each image
using IteratorType = itk::ImageRegionIteratorWithIndex<ImageType>;
// Declare the type of the index to access images
using IndexType = itk::Index<ImageDimension>;
// Declare the type of the size
using SizeType = itk::Size<ImageDimension>;
// Declare the type of the Region
using RegionType = itk::ImageRegion<ImageDimension>;
// Create two images
auto inputImage = ImageType::New();
// Define their size, and start index
SizeType size;
size[0] = 2;
size[1] = 2;
size[2] = 2;
IndexType start;
start[0] = 0;
start[1] = 0;
start[2] = 0;
RegionType region;
region.SetIndex(start);
region.SetSize(size);
// Initialize Image A
inputImage->SetRegions(region);
inputImage->Allocate();
// Create one iterator for the Input Image (this is a light object)
IteratorType it(inputImage, inputImage->GetBufferedRegion());
// Initialize the content of Image A
PixelType vectorValue;
vectorValue.Fill(5.0); // FIXME: replace with something more interesting...
it.GoToBegin();
while (!it.IsAtEnd())
{
it.Set(vectorValue);
std::cout << it.Get() << std::endl;
++it;
}
// Declare the type for the filter
using FilterType = itk::ExponentialDisplacementFieldImageFilter<ImageType, ImageType>;
// Create one filter
auto filter = FilterType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, ExponentialDisplacementFieldImageFilter, ImageToImageFilter);
// Connect the input images
filter->SetInput(inputImage);
auto automaticNumberOfIterations = true;
ITK_TEST_SET_GET_BOOLEAN(filter, AutomaticNumberOfIterations, automaticNumberOfIterations);
unsigned int maximumNumberOfIterations = 20;
filter->SetMaximumNumberOfIterations(maximumNumberOfIterations);
ITK_TEST_SET_GET_VALUE(maximumNumberOfIterations, filter->GetMaximumNumberOfIterations());
// Execute the filter
filter->Update();
// Get the Smart Pointer to the Filter Output
ImageType::Pointer outputImage = filter->GetOutput();
// Create an iterator for going through the image output
IteratorType ot(outputImage, outputImage->GetRequestedRegion());
// Check the content of the result image
std::cout << "Verification of the output " << std::endl;
const PixelType::ValueType epsilon = 1e-6;
bool testpassed = true;
ot.GoToBegin();
it.GoToBegin();
while (!ot.IsAtEnd())
{
PixelType input = it.Get();
PixelType output = ot.Get();
// The input is a constant field, its exponential
// should be exactly equal
testpassed &= ((input - output).GetNorm() < epsilon);
std::cout << input << " => ";
std::cout << output << std::endl;
++ot;
++it;
}
// Ask for the inverse deformation
auto computeInverse = true;
ITK_TEST_SET_GET_BOOLEAN(filter, ComputeInverse, computeInverse);
// Execute the filter
filter->Update();
// Get the Smart Pointer to the Filter Output
ImageType::Pointer outputImage2 = filter->GetOutput();
// Create an iterator for going through the image output
IteratorType ot2(outputImage2, outputImage2->GetRequestedRegion());
// Check the content of the result image
std::cout << "Verification of the inverse output " << std::endl;
ot2.GoToBegin();
it.GoToBegin();
while (!ot2.IsAtEnd())
{
PixelType input = it.Get();
PixelType output = ot2.Get();
// The input is a constant field, its inverse exponential
// should be exactly equal to its opposite
testpassed &= ((input + output).GetNorm() < epsilon);
std::cout << input << " => ";
std::cout << output << std::endl;
++ot2;
++it;
}
// Try with 0 iterations
computeInverse = false;
filter->SetComputeInverse(computeInverse);
maximumNumberOfIterations = 0;
filter->SetMaximumNumberOfIterations(maximumNumberOfIterations);
// Execute the filter
filter->Update();
// Get the Smart Pointer to the Filter Output
ImageType::Pointer outputImage3 = filter->GetOutput();
// Create an iterator for going through the image output
IteratorType ot3(outputImage3, outputImage3->GetRequestedRegion());
// Check the content of the result image
std::cout << "Verification of the output with 0 iterations " << std::endl;
ot3.GoToBegin();
it.GoToBegin();
while (!ot3.IsAtEnd())
{
PixelType input = it.Get();
PixelType output = ot3.Get();
// The input is a constant field, its inverse exponential
// should be exactly equal to its opposite
testpassed &= ((input - output).GetNorm() < epsilon);
std::cout << input << " => ";
std::cout << output << std::endl;
++ot3;
++it;
}
// Try inverse with 0 iterations
computeInverse = true;
filter->SetComputeInverse(computeInverse);
filter->SetMaximumNumberOfIterations(maximumNumberOfIterations);
// Execute the filter
filter->Update();
// Get the Smart Pointer to the Filter Output
ImageType::Pointer outputImage4 = filter->GetOutput();
// Create an iterator for going through the image output
IteratorType ot4(outputImage4, outputImage4->GetRequestedRegion());
// Check the content of the result image
std::cout << "Verification of the inverse output with 0 iterations " << std::endl;
ot4.GoToBegin();
it.GoToBegin();
while (!ot4.IsAtEnd())
{
PixelType input = it.Get();
PixelType output = ot4.Get();
// The input is a constant field, its inverse exponential
// should be exactly equal to its opposite
testpassed &= ((input + output).GetNorm() < epsilon);
std::cout << input << " => ";
std::cout << output << std::endl;
++ot4;
++it;
}
// See if the output is consistent when the spacing is changed
// (in an isotropic manner)
constexpr double isospacing = 10;
using SpacingType = ImageType::SpacingType;
SpacingType spacing;
for (unsigned int d = 0; d < ImageDimension; ++d)
{
spacing[d] = isospacing;
}
filter->SetInput(inputImage);
maximumNumberOfIterations = 20;
filter->SetMaximumNumberOfIterations(maximumNumberOfIterations);
computeInverse = false;
filter->SetComputeInverse(computeInverse);
// Random number generator
vnl_random rng;
constexpr double power = 5.0;
it.GoToBegin();
while (!it.IsAtEnd())
{
for (unsigned int d = 0; d < ImageDimension; ++d)
{
it.Value()[d] = power * rng.normal();
}
++it;
}
filter->Update();
ImageType::Pointer outputImage5 = filter->GetOutput();
outputImage5->DisconnectPipeline();
// Change the spacing
inputImage->SetSpacing(spacing);
it.GoToBegin();
while (!it.IsAtEnd())
{
it.Value() *= isospacing;
++it;
}
filter->Update();
ImageType::Pointer outputImage6 = filter->GetOutput();
IteratorType ot5(outputImage5, outputImage5->GetRequestedRegion());
IteratorType ot6(outputImage6, outputImage6->GetRequestedRegion());
std::cout << "Verification of the consistency when spacing is changed " << std::endl;
ot5.GoToBegin();
ot6.GoToBegin();
while (!ot5.IsAtEnd())
{
testpassed &= ((ot5.Value() - (ot6.Value() / isospacing)).GetNorm() < epsilon);
std::cout << ot5.Value() << " => ";
std::cout << ot6.Value() / isospacing << std::endl;
++ot5;
++ot6;
}
if (!testpassed)
{
std::cout << "Test failed" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed" << std::endl;
return EXIT_SUCCESS;
}
|