File: itkSignedMaurerDistanceMapImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (464 lines) | stat: -rw-r--r-- 15,047 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSignedMaurerDistanceMapImageFilter_hxx
#define itkSignedMaurerDistanceMapImageFilter_hxx

#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageRegionIterator.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkBinaryContourImageFilter.h"
#include "itkProgressReporter.h"
#include "itkProgressAccumulator.h"
#include "itkMath.h"
#include "vnl/vnl_vector.h"

namespace itk
{
template <typename TInputImage, typename TOutputImage>
SignedMaurerDistanceMapImageFilter<TInputImage, TOutputImage>::SignedMaurerDistanceMapImageFilter()
  : m_BackgroundValue(InputPixelType{})
  , m_Spacing()
  , m_InputCache(nullptr)
{
  this->DynamicMultiThreadingOff();
}

template <typename TInputImage, typename TOutputImage>
unsigned int
SignedMaurerDistanceMapImageFilter<TInputImage, TOutputImage>::SplitRequestedRegion(unsigned int            i,
                                                                                    unsigned int            num,
                                                                                    OutputImageRegionType & splitRegion)
{
  // Get the output pointer
  OutputImageType * outputPtr = this->GetOutput();

  // Initialize the splitRegion to the output requested region
  splitRegion = outputPtr->GetRequestedRegion();

  const OutputSizeType & requestedRegionSize = splitRegion.GetSize();

  OutputIndexType splitIndex = splitRegion.GetIndex();
  OutputSizeType  splitSize = splitRegion.GetSize();

  // split on the outermost dimension available
  // and avoid the current dimension
  int splitAxis = static_cast<int>(outputPtr->GetImageDimension()) - 1;
  while ((requestedRegionSize[splitAxis] == 1) || (splitAxis == static_cast<int>(m_CurrentDimension)))
  {
    --splitAxis;
    if (splitAxis < 0)
    { // cannot split
      itkDebugMacro("Cannot Split");
      return 1;
    }
  }

  // determine the actual number of pieces that will be generated
  auto range = static_cast<double>(requestedRegionSize[splitAxis]);

  auto         valuesPerThread = static_cast<unsigned int>(std::ceil(range / static_cast<double>(num)));
  unsigned int maxThreadIdUsed = static_cast<unsigned int>(std::ceil(range / static_cast<double>(valuesPerThread))) - 1;

  // Split the region
  if (i < maxThreadIdUsed)
  {
    splitIndex[splitAxis] += i * valuesPerThread;
    splitSize[splitAxis] = valuesPerThread;
  }
  if (i == maxThreadIdUsed)
  {
    splitIndex[splitAxis] += i * valuesPerThread;
    // last thread needs to process the "rest" dimension being split
    splitSize[splitAxis] = splitSize[splitAxis] - i * valuesPerThread;
  }

  // set the split region ivars
  splitRegion.SetIndex(splitIndex);
  splitRegion.SetSize(splitSize);

  itkDebugMacro("Split Piece: " << splitRegion);

  return maxThreadIdUsed + 1;
}

template <typename TInputImage, typename TOutputImage>
void
SignedMaurerDistanceMapImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  ThreadIdType numberOfWorkUnits = this->GetNumberOfWorkUnits();

  OutputImageType *      outputPtr = this->GetOutput();
  const InputImageType * inputPtr = this->GetInput();
  m_InputCache = this->GetInput();

  // prepare the data
  this->AllocateOutputs();
  this->m_Spacing = outputPtr->GetSpacing();

  // store the binary image in an image with a pixel type as small as possible
  // instead of keeping the native input pixel type to avoid using too much
  // memory.
  using BinaryFilterType = BinaryThresholdImageFilter<InputImageType, OutputImageType>;

  auto progressAcc = ProgressAccumulator::New();
  progressAcc->SetMiniPipelineFilter(this);

  // compute the boundary of the binary object.
  // To do that, we erode the binary object. The eroded pixels are the ones
  // on the boundary. We mark them with the value 2
  auto binaryFilter = BinaryFilterType::New();

  binaryFilter->SetLowerThreshold(this->m_BackgroundValue);
  binaryFilter->SetUpperThreshold(this->m_BackgroundValue);
  binaryFilter->SetInsideValue(NumericTraits<OutputPixelType>::max());
  binaryFilter->SetOutsideValue(OutputPixelType{});
  binaryFilter->SetInput(inputPtr);
  binaryFilter->SetNumberOfWorkUnits(numberOfWorkUnits);
  progressAcc->RegisterInternalFilter(binaryFilter, 0.1f);
  binaryFilter->GraftOutput(outputPtr);
  binaryFilter->Update();

  // Dilate the inverted image by 1 pixel to give it the same boundary
  // as the uninverted inputPtr.
  using BorderFilterType = BinaryContourImageFilter<OutputImageType, OutputImageType>;
  auto borderFilter = BorderFilterType::New();
  borderFilter->SetInput(binaryFilter->GetOutput());
  borderFilter->SetForegroundValue(OutputPixelType{});
  borderFilter->SetBackgroundValue(NumericTraits<OutputPixelType>::max());
  borderFilter->SetFullyConnected(true);
  borderFilter->SetNumberOfWorkUnits(numberOfWorkUnits);
  progressAcc->RegisterInternalFilter(borderFilter, 0.23f);
  borderFilter->Update();

  this->GraftOutput(borderFilter->GetOutput());

  // Set up the multithreaded processing
  typename ImageSource<OutputImageType>::ThreadStruct str;
  str.Filter = this;

  this->GetMultiThreader()->SetNumberOfWorkUnits(numberOfWorkUnits);
  this->GetMultiThreader()->SetSingleMethod(this->ThreaderCallback, &str);

  // multithread the execution
  for (unsigned int d = 0; d < ImageDimension; ++d)
  {
    m_CurrentDimension = d;
    this->GetMultiThreader()->SingleMethodExecute();
  }
}

template <typename TInputImage, typename TOutputImage>
void
SignedMaurerDistanceMapImageFilter<TInputImage, TOutputImage>::ThreadedGenerateData(
  const OutputImageRegionType & outputRegionForThread,
  ThreadIdType                  threadId)
{
  OutputImageType * outputImage = this->GetOutput();

  InputRegionType region = outputRegionForThread;
  InputSizeType   size = region.GetSize();
  InputIndexType  startIndex = outputRegionForThread.GetIndex();

  OutputImageType * outputPtr = this->GetOutput();

  // compute the number of rows first, so we can setup a progress reporter
  std::vector<InputSizeValueType> NumberOfRows;
  for (unsigned int i = 0; i < InputImageDimension; ++i)
  {
    NumberOfRows.push_back(1);
    for (unsigned int d = 0; d < InputImageDimension; ++d)
    {
      if (d != i)
      {
        NumberOfRows[i] *= size[d];
      }
    }
  }

  // set the progress reporter. Use a pointer to be able to destroy it before
  // the creation of progress2
  // so it won't set wrong progress at the end of ThreadedGenerateData()
  float progressPerDimension = 0.67f / static_cast<float>(ImageDimension);
  if (!this->m_SquaredDistance)
  {
    progressPerDimension = 0.67f / (static_cast<float>(ImageDimension) + 1);
  }
  auto progress =
    std::make_unique<ProgressReporter>(this,
                                       threadId,
                                       NumberOfRows[m_CurrentDimension],
                                       30,
                                       0.33f + static_cast<float>(m_CurrentDimension * progressPerDimension),
                                       progressPerDimension);

  // This variable provides the amount by which to divide the dimensionless index in order to get the index for each
  // dimension.
  vnl_vector<unsigned int> k(InputImageDimension - 1);
  unsigned int             count = 0;
  k[count] = 1;
  for (unsigned int d = m_CurrentDimension + InputImageDimension - 1; d > m_CurrentDimension + 1; d--)
  {
    k[count + 1] = k[count] * size[d % InputImageDimension];
    ++count;
  }
  k.flip();

  // The index is defined as the dimensionless index into the pixel.
  // It must be divided by each dimension size in order to get the index for that dimension.
  // The result of this division is the offsetIndex, which is the index offset relative to the region of this thread.
  // The true pixel location (idx) is provided by the sum of the offsetIndex and the startIndex.
  InputSizeValueType index;
  OutputIndexType    offsetIndex;
  offsetIndex.Fill(0);
  InputSizeValueType tempRow = NumberOfRows[m_CurrentDimension];
  OutputIndexType    idx;
  idx.Fill(0);

  for (InputSizeValueType n = 0; n < tempRow; ++n)
  {
    index = n;
    count = 0;
    for (unsigned int d = m_CurrentDimension + 1; d < m_CurrentDimension + InputImageDimension; ++d)
    {
      offsetIndex[d % InputImageDimension] =
        static_cast<OutputIndexValueType>(static_cast<double>(index) / static_cast<double>(k[count]));
      idx[d % InputImageDimension] =
        offsetIndex[d % InputImageDimension] + static_cast<OutputIndexValueType>(startIndex[d % InputImageDimension]);

      index %= k[count];
      ++count;
    }
    this->Voronoi(m_CurrentDimension, idx, outputImage);
    progress->CompletedPixel();
  }
  progress.reset();

  if (m_CurrentDimension == ImageDimension - 1 && !this->m_SquaredDistance)
  {
    using OutputIterator = ImageRegionIterator<OutputImageType>;
    using InputIterator = ImageRegionConstIterator<InputImageType>;

    typename OutputImageType::RegionType outputRegion = outputRegionForThread;

    OutputIterator Ot(outputPtr, outputRegion);
    InputIterator  It(m_InputCache, outputRegion);

    Ot.GoToBegin();
    It.GoToBegin();

    ProgressReporter progress2(this,
                               threadId,
                               outputRegionForThread.GetNumberOfPixels(),
                               30,
                               0.33f + static_cast<float>(ImageDimension * progressPerDimension),
                               progressPerDimension);

    using OutputRealType = typename NumericTraits<OutputPixelType>::RealType;

    while (!Ot.IsAtEnd())
    {
      // cast to a real type is required on some platforms
      const auto outputValue =
        static_cast<OutputPixelType>(std::sqrt(static_cast<OutputRealType>(itk::Math::abs(Ot.Get()))));

      if (Math::NotExactlyEquals(It.Get(), this->m_BackgroundValue))
      {
        if (this->GetInsideIsPositive())
        {
          Ot.Set(outputValue);
        }
        else
        {
          Ot.Set(-outputValue);
        }
      }
      else
      {
        if (this->GetInsideIsPositive())
        {
          Ot.Set(-outputValue);
        }
        else
        {
          Ot.Set(outputValue);
        }
      }

      ++Ot;
      ++It;
      progress2.CompletedPixel();
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
SignedMaurerDistanceMapImageFilter<TInputImage, TOutputImage>::Voronoi(unsigned int      d,
                                                                       OutputIndexType   idx,
                                                                       OutputImageType * output)
{
  OutputRegionType    oRegion = output->GetRequestedRegion();
  OutputSizeValueType nd = oRegion.GetSize()[d];

  vnl_vector<OutputPixelType> g(nd, 0);
  vnl_vector<OutputPixelType> h(nd, 0);


  InputRegionType iRegion = m_InputCache->GetRequestedRegion();
  InputIndexType  startIndex = iRegion.GetIndex();

  OutputPixelType di;

  int l = -1;

  for (unsigned int i = 0; i < nd; ++i)
  {
    idx[d] = i + startIndex[d];

    di = output->GetPixel(idx);

    OutputPixelType iw;

    if (this->GetUseImageSpacing())
    {
      iw = static_cast<OutputPixelType>(i) * static_cast<OutputPixelType>(this->m_Spacing[d]);
    }
    else
    {
      iw = static_cast<OutputPixelType>(i);
    }

    if (Math::NotExactlyEquals(di, NumericTraits<OutputPixelType>::max()))
    {
      if (l < 1)
      {
        ++l;
        g(l) = di;
        h(l) = iw;
      }
      else
      {
        while ((l >= 1) && this->Remove(g(l - 1), g(l), di, h(l - 1), h(l), iw))
        {
          --l;
        }
        ++l;
        g(l) = di;
        h(l) = iw;
      }
    }
  }

  if (l == -1)
  {
    return;
  }

  int ns = l;

  l = 0;

  for (unsigned int i = 0; i < nd; ++i)
  {
    OutputPixelType iw;

    if (this->GetUseImageSpacing())
    {
      iw = static_cast<OutputPixelType>(i * this->m_Spacing[d]);
    }
    else
    {
      iw = static_cast<OutputPixelType>(i);
    }

    OutputPixelType d1 = itk::Math::abs(g(l)) + (h(l) - iw) * (h(l) - iw);

    while (l < ns)
    {
      // be sure to compute d2 *only* if l < ns
      OutputPixelType d2 = itk::Math::abs(g(l + 1)) + (h(l + 1) - iw) * (h(l + 1) - iw);
      // then compare d1 and d2
      if (d1 <= d2)
      {
        break;
      }
      ++l;
      d1 = d2;
    }
    idx[d] = i + startIndex[d];

    if (Math::NotExactlyEquals(m_InputCache->GetPixel(idx), this->m_BackgroundValue))
    {
      if (this->m_InsideIsPositive)
      {
        output->SetPixel(idx, d1);
      }
      else
      {
        output->SetPixel(idx, -d1);
      }
    }
    else
    {
      if (this->m_InsideIsPositive)
      {
        output->SetPixel(idx, -d1);
      }
      else
      {
        output->SetPixel(idx, d1);
      }
    }
  }
}

template <typename TInputImage, typename TOutputImage>
bool
SignedMaurerDistanceMapImageFilter<TInputImage, TOutputImage>::Remove(OutputPixelType d1,
                                                                      OutputPixelType d2,
                                                                      OutputPixelType df,
                                                                      OutputPixelType x1,
                                                                      OutputPixelType x2,
                                                                      OutputPixelType xf)
{
  OutputPixelType a = x2 - x1;
  OutputPixelType b = xf - x2;
  OutputPixelType c = xf - x1;

  OutputPixelType value = (c * itk::Math::abs(d2) - b * itk::Math::abs(d1) - a * itk::Math::abs(df) - a * b * c);

  return (value > 0);
}

/**
 * Standard "PrintSelf" method
 */
template <typename TInputImage, typename TOutputImage>
void
SignedMaurerDistanceMapImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);
  os << indent << "Background Value: " << this->m_BackgroundValue << std::endl;
  os << indent << "Spacing: " << this->m_Spacing << std::endl;
  os << indent << "Inside is positive: " << this->m_InsideIsPositive << std::endl;
  os << indent << "Use image spacing: " << this->m_UseImageSpacing << std::endl;
  os << indent << "Squared distance: " << this->m_SquaredDistance << std::endl;
}
} // end namespace itk

#endif