1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkShowDistanceMap.h"
#include "itkDanielssonDistanceMapImageFilter.h"
#include "itkStdStreamStateSave.h"
#include "itkTestingMacros.h"
int
itkDanielssonDistanceMapImageFilterTest(int, char *[])
{
// Save the format stream variables for std::cout
// They will be restored when coutState goes out of scope
itk::StdStreamStateSave coutState(std::cout);
std::cout << "Test ITK Danielsson Distance Map" << std::endl << std::endl;
std::cout << "Compute the distance map of a 9x9 image" << std::endl;
std::cout << "with a point at (4,4) (value=1)" << std::endl << std::endl;
std::cout << "with a point at (1,6) (value=2)" << std::endl << std::endl;
using myImageType2D1 = itk::Image<unsigned char, 2>;
using myImageType2D2 = itk::Image<float, 2>;
/* Allocate the 2D image */
myImageType2D1::SizeType size2D = { { 9, 9 } };
myImageType2D1::IndexType index2D = { { 0, 0 } };
myImageType2D1::RegionType region2D{ index2D, size2D };
auto inputImage2D = myImageType2D1::New();
inputImage2D->SetRegions(region2D);
inputImage2D->AllocateInitialized();
// Set pixel (4,4) with the value 1
// and pixel (1,6) with the value 2
// The Danielsson Distance is performed for each pixel with a value > 0
// The ClosestPoints computation is based on the value of the pixel.
index2D[0] = 4;
index2D[1] = 4;
inputImage2D->SetPixel(index2D, 1);
index2D[0] = 1;
index2D[1] = 6;
inputImage2D->SetPixel(index2D, 2);
// Create Danielsson Distance Map filter
using myFilterType2D = itk::DanielssonDistanceMapImageFilter<myImageType2D1, myImageType2D2>;
auto filter2D = myFilterType2D::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(filter2D, DanielssonDistanceMapImageFilter, ImageToImageFilter);
filter2D->SetInput(inputImage2D);
myImageType2D2::Pointer outputDistance2D = filter2D->GetOutput();
using VoronoiImageType = myFilterType2D::VoronoiImageType;
VoronoiImageType::Pointer outputVoronoi2D = filter2D->GetVoronoiMap();
myFilterType2D::VectorImagePointer outputComponents = filter2D->GetVectorDistanceMap();
ITK_TRY_EXPECT_NO_EXCEPTION(filter2D->Update());
ShowDistanceMap(outputDistance2D);
std::cout << "Voronoi Map Image 2D" << std::endl << std::endl;
ShowDistanceMap(outputVoronoi2D);
// Show VectorsComponents Points map
std::cout << std::endl << std::endl;
std::cout << "Components Map Image 2D" << std::endl << std::endl;
itk::ImageSliceConstIteratorWithIndex<myFilterType2D::VectorImageType> it2D4(outputComponents,
outputComponents->GetRequestedRegion());
it2D4.SetFirstDirection(0);
it2D4.SetSecondDirection(1);
while (!it2D4.IsAtEnd())
{
while (!it2D4.IsAtEndOfSlice())
{
while (!it2D4.IsAtEndOfLine())
{
std::cout << '[';
for (unsigned int i = 0; i < 2; ++i)
{
std::cout << it2D4.Get()[i];
if (i == 0)
{
std::cout << ',';
}
}
std::cout << ']';
std::cout << '\t';
++it2D4;
}
std::cout << std::endl;
it2D4.NextLine();
}
it2D4.NextSlice();
}
// Test Squared Distance functionality
myImageType2D2::IndexType index;
index[0] = 0;
index[1] = 0;
const double distance1 = outputDistance2D->GetPixel(index);
bool squaredDistance = true;
ITK_TEST_SET_GET_BOOLEAN(filter2D, SquaredDistance, squaredDistance);
ITK_TRY_EXPECT_NO_EXCEPTION(filter2D->Update());
const double distance2 = outputDistance2D->GetPixel(index);
const myImageType2D2::PixelType epsilon = 1e-5;
if (itk::Math::abs(distance2 - distance1 * distance1) > epsilon)
{
std::cerr << "Error in use of the SetSquaredDistance() method" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Squared Distance Map " << std::endl;
ShowDistanceMap(outputDistance2D);
// Test for images with anisotropic spacing
myImageType2D1::SpacingType anisotropicSpacing;
anisotropicSpacing[0] = 1.0;
anisotropicSpacing[1] = 5.0;
inputImage2D->SetSpacing(anisotropicSpacing);
inputImage2D->FillBuffer(0);
index2D[0] = 4;
index2D[1] = 4;
inputImage2D->SetPixel(index2D, 1);
filter2D->SetInput(inputImage2D);
bool inputIsBinary = true;
ITK_TEST_SET_GET_BOOLEAN(filter2D, InputIsBinary, inputIsBinary);
bool useImageSpacing = true;
ITK_TEST_SET_GET_BOOLEAN(filter2D, UseImageSpacing, useImageSpacing);
ITK_TRY_EXPECT_NO_EXCEPTION(filter2D->Update());
index2D[1] = 5;
auto expectedValue = static_cast<myImageType2D2::PixelType>(anisotropicSpacing[1]);
expectedValue *= expectedValue;
myImageType2D2::PixelType pixelValue = filter2D->GetOutput()->GetPixel(index2D);
if (itk::Math::abs(expectedValue - pixelValue) > epsilon)
{
std::cerr << "Error when image spacing is anisotropic." << std::endl;
std::cerr << "Pixel value was " << pixelValue << ", expected " << expectedValue << std::endl;
return EXIT_FAILURE;
}
ShowDistanceMap(outputDistance2D);
// Create a large 3D image with a small foreground object. The foreground is denoted by a pixel value of 0,
// and the background by a non-zero pixel value. This will test speedups to the code that ignore all background
// pixels in the computation since those pixels do not influence the result.
// Allocate the 3D image
using ImageType3D = itk::Image<float, 3>;
ImageType3D::SizeType size3D = { { 200, 200, 200 } };
ImageType3D::IndexType index3D = { { 0, 0 } };
ImageType3D::RegionType region3D{ index3D, size3D };
auto inputImage3D = ImageType3D::New();
inputImage3D->SetRegions(region3D);
inputImage3D->Allocate();
inputImage3D->FillBuffer(1);
// Set a few pixels in the middle of the image to 0. These are the foreground pixels for which the distance will be
// solved.
ImageType3D::IndexType foregroundIndex;
ImageType3D::SizeType foregroundSize;
for (unsigned int i = 0; i < 3; ++i)
{
foregroundSize[i] = 5;
foregroundIndex[i] = (size3D[i] / 2) - foregroundSize[i] / 2;
}
ImageType3D::RegionType foregroundRegion{ foregroundIndex, foregroundSize };
itk::ImageRegionIteratorWithIndex<ImageType3D> it3D(inputImage3D, foregroundRegion);
for (it3D.GoToBegin(); !it3D.IsAtEnd(); ++it3D)
{
it3D.Set(0);
}
// Create Danielsson Distance Map filter
using myFilterType3D = itk::DanielssonDistanceMapImageFilter<ImageType3D, ImageType3D>;
auto filter3D = myFilterType3D::New();
filter3D->SetInput(inputImage3D);
ITK_TRY_EXPECT_NO_EXCEPTION(filter3D->Update());
std::cout << "Test finished." << std::endl;
return EXIT_SUCCESS;
}
|