1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkVnlInverseFFTImageFilter_hxx
#define itkVnlInverseFFTImageFilter_hxx
#include "itkProgressReporter.h"
#include "itkVnlFFTCommon.h"
namespace itk
{
template <typename TInputImage, typename TOutputImage>
void
VnlInverseFFTImageFilter<TInputImage, TOutputImage>::GenerateData()
{
// Get pointers to the input and output.
typename InputImageType::ConstPointer inputPtr = this->GetInput();
typename OutputImageType::Pointer outputPtr = this->GetOutput();
if (!inputPtr || !outputPtr)
{
return;
}
// We don't have a nice progress to report, but at least this simple line
// reports the beginning and the end of the process.
ProgressReporter progress(this, 0, 1);
const OutputSizeType outputSize = outputPtr->GetLargestPossibleRegion().GetSize();
// Allocate output buffer memory
outputPtr->SetBufferedRegion(outputPtr->GetRequestedRegion());
outputPtr->Allocate();
const InputPixelType * in = inputPtr->GetBufferPointer();
unsigned int vectorSize = 1;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
if (!VnlFFTCommon::IsDimensionSizeLegal(outputSize[i]))
{
itkExceptionMacro("Cannot compute FFT of image with size "
<< outputSize
<< ". VnlInverseFFTImageFilter operates only on images whose size in each dimension has only a "
"combination of 2,3, and 5 as prime factors.");
}
vectorSize *= outputSize[i];
}
SignalVectorType signal(vectorSize);
for (unsigned int i = 0; i < vectorSize; ++i)
{
signal[i] = in[i];
}
OutputPixelType * out = outputPtr->GetBufferPointer();
// call the proper transform, based on compile type template parameter
VnlFFTCommon::VnlFFTTransform<OutputImageType> vnlfft(outputSize);
vnlfft.transform(signal.data_block(), 1);
// Copy the VNL output back to the ITK image.
// Extract the real part of the signal.
// Ideally, the normalization by the number of elements
// should have been accounted for by the VNL inverse Fourier transform,
// but it is not. So, we take care of it by dividing the signal by
// the vectorSize.
for (unsigned int i = 0; i < vectorSize; ++i)
{
out[i] = signal[i].real() / vectorSize;
}
}
template <typename TInputImage, typename TOutputImage>
SizeValueType
VnlInverseFFTImageFilter<TInputImage, TOutputImage>::GetSizeGreatestPrimeFactor() const
{
return VnlFFTCommon::GREATEST_PRIME_FACTOR;
}
} // namespace itk
#endif
|