1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkFastMarchingImageFilter_h
#define itkFastMarchingImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkLevelSet.h"
#include "itkMath.h"
#include "ITKFastMarchingExport.h"
#include <functional>
#include <queue>
namespace itk
{
/** \class FastMarchingImageFilterEnums
* \brief Contains all enum classes used by the FastMarchingImageFilter class.
* \ingroup ITKFastMarching
*/
class FastMarchingImageFilterEnums
{
public:
/** \class Label
* \ingroup ITKFastMarching
* \ingroup LevelSetSegmentation
* Enum of Fast Marching algorithm point types. FarPoints represent far
* away points; TrialPoints represent points within a narrowband of the
* propagating front; and AlivePoints represent points which have already
* been processed. */
enum class Label : uint8_t
{
FarPoint = 0,
AlivePoint,
TrialPoint,
InitialTrialPoint,
OutsidePoint
};
};
// Define how to print enumeration
extern ITKFastMarching_EXPORT std::ostream &
operator<<(std::ostream & out, const FastMarchingImageFilterEnums::Label value);
/**
* \class FastMarchingImageFilter
* \brief Solve an Eikonal equation using Fast Marching
*
* Fast marching solves an Eikonal equation where the speed is always
* non-negative and depends on the position only. Starting from an
* initial position on the front, fast marching systematically moves the
* front forward one grid point at a time.
*
* Updates are performed using an entropy satisfy scheme where only
* "upwind" neighborhoods are used. This implementation of Fast Marching
* uses a std::priority_queue to locate the next proper grid position to
* update.
*
* Fast Marching sweeps through N grid points in (N log N) steps to obtain
* the arrival time value as the front propagates through the grid.
*
* Implementation of this class is based on Chapter 8 of
* "Level Set Methods and Fast Marching Methods", J.A. Sethian,
* Cambridge Press, Second edition, 1999.
*
* This class is templated over the level set image type and the speed
* image type. The initial front is specified by two containers: one
* containing the known points and one containing the trial
* points. Alive points are those that are already part of the
* object, and trial points are considered for inclusion.
* In order for the filter to evolve, at least some trial
* points must be specified. These can for instance be specified as the layer of
* pixels around the alive points.
* The speed function can be specified as a speed image or a
* speed constant. The speed image is set using the method
* SetInput(). If the speed image is nullptr, a constant speed function
* is used and is specified using method the SetSpeedConstant().
*
* If the speed function is constant and of value one, fast marching results
* in an approximate distance function from the initial alive points.
* FastMarchingImageFilter is used in the ReinitializeLevelSetImageFilter
* object to create a signed distance function from the zero level set.
*
* The algorithm can be terminated early by setting an appropriate stopping
* value. The algorithm terminates when the current arrival time being
* processed is greater than the stopping value.
*
* There are two ways to specify the output image information
* ( LargestPossibleRegion, Spacing, Origin): (a) it is copied directly from
* the input speed image or (b) it is specified by the user. Default values
* are used if the user does not specify all the information.
*
* The output information is computed as follows.
* If the speed image is nullptr or if the OverrideOutputInformation is set to
* true, the output information is set from user specified parameters. These
* parameters can be specified using methods SetOutputRegion(), SetOutputSpacing(), SetOutputDirection(),
* and SetOutputOrigin(). Else if the speed image is not nullptr, the output information
* is copied from the input speed image.
*
* For an alternative implementation, see itk::FastMarchingImageFilter.
*
* Possible Improvements:
* In the current implementation, std::priority_queue only allows
* taking nodes out from the front and putting nodes in from the back.
* To update a value already on the heap, a new node is added to the heap.
* The defunct old node is left on the heap. When it is removed from the
* top, it will be recognized as invalid and not used.
* Future implementations can implement the heap in a different way
* allowing the values to be updated. This will generally require
* some sift-up and sift-down functions and
* an image of back-pointers going from the image to heap in order
* to locate the node which is to be updated.
*
* \sa FastMarchingImageFilterBase
* \sa LevelSetTypeDefault
* \ingroup LevelSetSegmentation
* \ingroup ITKFastMarching
*/
template <typename TLevelSet, typename TSpeedImage = Image<float, TLevelSet::ImageDimension>>
class ITK_TEMPLATE_EXPORT FastMarchingImageFilter : public ImageToImageFilter<TSpeedImage, TLevelSet>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(FastMarchingImageFilter);
/** Standard class typedefs. */
using Self = FastMarchingImageFilter;
using Superclass = ImageToImageFilter<TSpeedImage, TLevelSet>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(FastMarchingImageFilter);
/** Typedef support of level set method types. */
using LevelSetType = LevelSetTypeDefault<TLevelSet>;
using LevelSetImageType = typename LevelSetType::LevelSetImageType;
using LevelSetPointer = typename LevelSetType::LevelSetPointer;
using PixelType = typename LevelSetType::PixelType;
using NodeType = typename LevelSetType::NodeType;
using NodeIndexType = typename NodeType::IndexType;
using NodeContainer = typename LevelSetType::NodeContainer;
using NodeContainerPointer = typename LevelSetType::NodeContainerPointer;
using OutputSizeType = typename LevelSetImageType::SizeType;
using OutputRegionType = typename LevelSetImageType::RegionType;
using OutputSpacingType = typename LevelSetImageType::SpacingType;
using OutputDirectionType = typename LevelSetImageType::DirectionType;
using OutputPointType = typename LevelSetImageType::PointType;
class AxisNodeType : public NodeType
{
public:
AxisNodeType() = default;
int
GetAxis() const
{
return m_Axis;
}
void
SetAxis(int axis)
{
m_Axis = axis;
}
AxisNodeType &
operator=(const NodeType & node)
{
this->NodeType::operator=(node);
return *this;
}
private:
int m_Axis{ 0 };
};
/** SpeedImage type alias support */
using SpeedImageType = TSpeedImage;
/** SpeedImagePointer type alias support */
using SpeedImagePointer = typename SpeedImageType::Pointer;
using SpeedImageConstPointer = typename SpeedImageType::ConstPointer;
/** Dimension of the level set and the speed image. */
static constexpr unsigned int SetDimension = LevelSetType::SetDimension;
static constexpr unsigned int SpeedImageDimension = SpeedImageType::ImageDimension;
/** Index type alias support */
using IndexType = Index<Self::SetDimension>;
using LabelEnum = FastMarchingImageFilterEnums::Label;
#if !defined(ITK_LEGACY_REMOVE)
/**Exposes enums values for backwards compatibility*/
static constexpr LabelEnum FarPoint = LabelEnum::FarPoint;
static constexpr LabelEnum AlivePoint = LabelEnum::AlivePoint;
static constexpr LabelEnum TrialPoint = LabelEnum::TrialPoint;
static constexpr LabelEnum InitialTrialPoint = LabelEnum::InitialTrialPoint;
static constexpr LabelEnum OutsidePoint = LabelEnum::OutsidePoint;
#endif
/** LabelImage type alias support */
using LabelImageType = Image<LabelEnum, Self::SetDimension>;
/** LabelImagePointer type alias support */
using LabelImagePointer = typename LabelImageType::Pointer;
template <typename TPixel>
void
SetBinaryMask(Image<TPixel, SetDimension> * iImage)
{
using InternalImageType = Image<TPixel, SetDimension>;
using InternalRegionIterator = ImageRegionConstIteratorWithIndex<InternalImageType>;
InternalRegionIterator b_it(iImage, iImage->GetLargestPossibleRegion());
b_it.GoToBegin();
TPixel zero_value{};
typename NodeContainer::ElementIdentifier NumberOfPoints = 0;
NodeType node;
node.SetValue(0.);
while (!b_it.IsAtEnd())
{
if (Math::ExactlyEquals(b_it.Get(), zero_value))
{
if (NumberOfPoints == 0)
{
m_OutsidePoints = NodeContainer::New();
}
node.SetIndex(b_it.GetIndex());
m_OutsidePoints->InsertElement(NumberOfPoints++, node);
}
++b_it;
}
this->Modified();
}
/** Set the container of points that are not meant to be evaluated. */
void
SetOutsidePoints(NodeContainer * points)
{
m_OutsidePoints = points;
this->Modified();
}
/** Set the container of Alive Points representing the initial front.
* Alive points are represented as a VectorContainer of LevelSetNodes. */
void
SetAlivePoints(NodeContainer * points)
{
m_AlivePoints = points;
this->Modified();
}
/** Get the container of Alive Points representing the initial front. */
NodeContainerPointer
GetAlivePoints()
{
return m_AlivePoints;
}
/** Set the container of Trial Points representing the initial front.
* Trial points are represented as a VectorContainer of LevelSetNodes. */
void
SetTrialPoints(NodeContainer * points)
{
m_TrialPoints = points;
this->Modified();
}
/** Get the container of Trial Points representing the initial front. */
NodeContainerPointer
GetTrialPoints()
{
return m_TrialPoints;
}
/** Get the point type label image. */
LabelImagePointer
GetLabelImage() const
{
return m_LabelImage;
}
/** Set the Speed Constant. If the Speed Image is nullptr,
* the SpeedConstant value is used for the whole level set.
* By default, the SpeedConstant is set to 1.0. */
void
SetSpeedConstant(double value)
{
m_SpeedConstant = value;
m_InverseSpeed = -1.0 * itk::Math::sqr(1.0 / m_SpeedConstant);
this->Modified();
}
/** Get the Speed Constant. */
itkGetConstReferenceMacro(SpeedConstant, double);
/** Set/Get the Normalization Factor for the Speed Image.
The values in the Speed Image is divided by this
factor. This allows the use of images with
integer pixel types to represent the speed. */
itkSetMacro(NormalizationFactor, double);
itkGetConstMacro(NormalizationFactor, double);
/** Set the Fast Marching algorithm Stopping Value. The Fast Marching
* algorithm is terminated when the value of the smallest trial point
* is greater than the stopping value. */
itkSetMacro(StoppingValue, double);
/** Get the Fast Marching algorithm Stopping Value. */
itkGetConstReferenceMacro(StoppingValue, double);
/** Set the Collect Points flag. Instrument the algorithm to collect
* a container of all nodes which it has visited. Useful for
* creating Narrowbands for level set algorithms that supports
* narrow banding. */
itkSetMacro(CollectPoints, bool);
/** Get the Const Collect Points flag. */
itkGetConstReferenceMacro(CollectPoints, bool);
itkBooleanMacro(CollectPoints);
/** Get the container of Processed Points. If the CollectPoints flag
* is set, the algorithm collects a container of all processed nodes.
* This is useful for defining creating Narrowbands for level
* set algorithms that supports narrow banding. */
NodeContainerPointer
GetProcessedPoints() const
{
return m_ProcessedPoints;
}
/** The output largest possible, spacing and origin is computed as follows.
* If the speed image is nullptr or if the OverrideOutputInformation is true,
* the output information is set from user specified parameters. These
* parameters can be specified using methods SetOutputRegion(), SetOutputSpacing(), SetOutputDirection(),
* and SetOutputOrigin(). Else if the speed image is not nullptr, the output information
* is copied from the input speed image. */
virtual void
SetOutputSize(const OutputSizeType & size)
{
m_OutputRegion = size;
}
virtual OutputSizeType
GetOutputSize() const
{
return m_OutputRegion.GetSize();
}
itkSetMacro(OutputRegion, OutputRegionType);
itkGetConstReferenceMacro(OutputRegion, OutputRegionType);
itkSetMacro(OutputSpacing, OutputSpacingType);
itkGetConstReferenceMacro(OutputSpacing, OutputSpacingType);
itkSetMacro(OutputDirection, OutputDirectionType);
itkGetConstReferenceMacro(OutputDirection, OutputDirectionType);
itkSetMacro(OutputOrigin, OutputPointType);
itkGetConstReferenceMacro(OutputOrigin, OutputPointType);
itkSetMacro(OverrideOutputInformation, bool);
itkGetConstReferenceMacro(OverrideOutputInformation, bool);
itkBooleanMacro(OverrideOutputInformation);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(SameDimensionCheck, (Concept::SameDimension<SetDimension, SpeedImageDimension>));
itkConceptMacro(SpeedConvertibleToDoubleCheck, (Concept::Convertible<typename TSpeedImage::PixelType, double>));
itkConceptMacro(DoubleConvertibleToLevelSetCheck, (Concept::Convertible<double, PixelType>));
itkConceptMacro(LevelSetOStreamWritableCheck, (Concept::OStreamWritable<PixelType>));
// End concept checking
#endif
protected:
FastMarchingImageFilter();
~FastMarchingImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
virtual void
Initialize(LevelSetImageType *);
virtual void
UpdateNeighbors(const IndexType & index, const SpeedImageType *, LevelSetImageType *);
virtual double
UpdateValue(const IndexType & index, const SpeedImageType *, LevelSetImageType *);
const AxisNodeType &
GetNodeUsedInCalculation(unsigned int idx) const
{
return m_NodesUsed[idx];
}
void
GenerateData() override;
/** Generate the output image meta information. */
void
GenerateOutputInformation() override;
void
EnlargeOutputRequestedRegion(DataObject * output) override;
/** Get Large Value. This value is used to
represent the concept of infinity for the time assigned to pixels that
have not been visited. This value is set by default to half the
max() of the pixel type used to represent the time-crossing map. */
itkGetConstReferenceMacro(LargeValue, PixelType);
OutputRegionType m_BufferedRegion{};
using LevelSetIndexType = typename LevelSetImageType::IndexType;
LevelSetIndexType m_StartIndex{};
LevelSetIndexType m_LastIndex{};
itkGetConstReferenceMacro(StartIndex, LevelSetIndexType);
itkGetConstReferenceMacro(LastIndex, LevelSetIndexType);
private:
NodeContainerPointer m_AlivePoints{};
NodeContainerPointer m_TrialPoints{};
NodeContainerPointer m_OutsidePoints{};
LabelImagePointer m_LabelImage{};
double m_SpeedConstant{};
double m_InverseSpeed{};
double m_StoppingValue{};
bool m_CollectPoints{};
NodeContainerPointer m_ProcessedPoints{};
OutputRegionType m_OutputRegion{};
OutputPointType m_OutputOrigin{};
OutputSpacingType m_OutputSpacing{};
OutputDirectionType m_OutputDirection{};
bool m_OverrideOutputInformation{};
typename LevelSetImageType::PixelType m_LargeValue{};
AxisNodeType m_NodesUsed[SetDimension]{};
/** Trial points are stored in a min-heap. This allow efficient access
* to the trial point with minimum value which is the next grid point
* the algorithm processes. */
using HeapContainer = std::vector<AxisNodeType>;
using NodeComparer = std::greater<AxisNodeType>;
using HeapType = std::priority_queue<AxisNodeType, HeapContainer, NodeComparer>;
HeapType m_TrialHeap{};
double m_NormalizationFactor{};
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkFastMarchingImageFilter.hxx"
#endif
#endif
|