1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkFastMarchingImageFilterBase.h"
#include "itkFastMarchingThresholdStoppingCriterion.h"
#include "itkTextOutput.h"
#include "itkTestingMacros.h"
#include "itkCommand.h"
namespace
{
// The following class is used to support callbacks
// on the filter in the pipeline that follows later
class ShowProgressObject
{
public:
ShowProgressObject(itk::ProcessObject * o) { m_Process = o; }
void
ShowProgress()
{
std::cout << "Progress " << m_Process->GetProgress() << std::endl;
}
itk::ProcessObject::Pointer m_Process;
};
} // namespace
int
itkFastMarchingImageFilterRealTest1(int itkNotUsed(argc), char * itkNotUsed(argv)[])
{
itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());
// Create a Fast Marching image filter object
using PixelType = float;
constexpr unsigned int Dimension = 2;
using FloatImageType = itk::Image<PixelType, Dimension>;
using CriterionType = itk::FastMarchingThresholdStoppingCriterion<FloatImageType, FloatImageType>;
using FastMarchingType = itk::FastMarchingImageFilterBase<FloatImageType, FloatImageType>;
auto criterion = CriterionType::New();
typename FloatImageType::PixelType threshold = 100.0;
criterion->SetThreshold(threshold);
ITK_TEST_SET_GET_VALUE(threshold, criterion->GetThreshold());
auto marcher = FastMarchingType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(marcher, FastMarchingImageFilterBase, FastMarchingBase);
marcher->SetStoppingCriterion(criterion);
ITK_TEST_SET_GET_VALUE(criterion, marcher->GetStoppingCriterion());
ShowProgressObject progressWatch(marcher);
itk::SimpleMemberCommand<ShowProgressObject>::Pointer command = itk::SimpleMemberCommand<ShowProgressObject>::New();
command->SetCallbackFunction(&progressWatch, &ShowProgressObject::ShowProgress);
marcher->AddObserver(itk::ProgressEvent(), command);
using NodePairType = FastMarchingType::NodePairType;
using NodePairContainerType = FastMarchingType::NodePairContainerType;
// Set up alive points
auto alive = NodePairContainerType::New();
NodePairType node_pair;
FloatImageType::OffsetType offset0 = { { 28, 35 } };
itk::Index<Dimension> index;
index.Fill(0);
node_pair.SetValue(0.0);
node_pair.SetNode(index + offset0);
alive->push_back(node_pair);
node_pair.SetValue(42.0);
index.Fill(200);
node_pair.SetNode(index); // this node is out of range
alive->push_back(node_pair);
marcher->SetAlivePoints(alive);
ITK_TEST_SET_GET_VALUE(alive, marcher->GetAlivePoints());
// Set up trial points
auto trial = NodePairContainerType::New();
node_pair.SetValue(1.0);
index.Fill(0);
index += offset0;
index[0] += 1;
node_pair.SetNode(index);
trial->push_back(node_pair);
index[0] -= 1;
index[1] += 1;
node_pair.SetNode(index);
trial->push_back(node_pair);
index[0] -= 1;
index[1] -= 1;
node_pair.SetNode(index);
trial->push_back(node_pair);
index[0] += 1;
index[1] -= 1;
node_pair.SetNode(index);
trial->push_back(node_pair);
node_pair.SetValue(42.0);
index.Fill(300); // this node is out of range
node_pair.SetNode(index);
trial->push_back(node_pair);
marcher->SetTrialPoints(trial);
ITK_TEST_SET_GET_VALUE(trial, marcher->GetTrialPoints());
// Specify the size of the output image
FloatImageType::SizeType size = { { 64, 64 } };
marcher->SetOutputSize(size);
// Set up a speed image of ones
auto speedImage = FloatImageType::New();
FloatImageType::RegionType region;
region.SetSize(size);
speedImage->SetLargestPossibleRegion(region);
speedImage->SetBufferedRegion(region);
speedImage->Allocate();
itk::ImageRegionIterator<FloatImageType> speedIter(speedImage, speedImage->GetBufferedRegion());
while (!speedIter.IsAtEnd())
{
speedIter.Set(1.0);
++speedIter;
}
marcher->SetInput(speedImage);
// Turn on debugging
marcher->DebugOn();
// Update the Fast Marching filter
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());
std::cout << "TargetReachedValue: " << marcher->GetTargetReachedValue() << std::endl;
std::cout << "ProcessedPoints: " << marcher->GetProcessedPoints() << std::endl;
// Check the results
FloatImageType::Pointer output = marcher->GetOutput();
itk::ImageRegionIterator<FloatImageType> iterator(output, output->GetBufferedRegion());
bool passed = true;
double outputValueThreshold = 1.42;
while (!iterator.IsAtEnd())
{
FloatImageType::IndexType tempIndex = iterator.GetIndex();
tempIndex -= offset0;
double distance = 0.0;
for (unsigned int j = 0; j < Dimension; ++j)
{
distance += tempIndex[j] * tempIndex[j];
}
distance = std::sqrt(distance);
auto outputValue = static_cast<double>(iterator.Get());
if (distance > itk::NumericTraits<double>::epsilon())
{
if (itk::Math::abs(outputValue) / distance > outputValueThreshold)
{
std::cout << "Error at index [" << iterator.GetIndex() << ']' << std::endl;
std::cout << "Expected scaled output value be less than: " << outputValueThreshold
<< ", but got: " << itk::Math::abs(outputValue) / distance
<< ", where output: " << itk::Math::abs(outputValue) << "; scale factor: " << distance << std::endl;
passed = false;
}
}
++iterator;
}
if (passed)
{
std::cout << "Test passed!" << std::endl;
return EXIT_SUCCESS;
}
else
{
std::cout << "Test failed!" << std::endl;
return EXIT_FAILURE;
}
}
|