File: itkFastMarchingImageFilterRealTest2.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (255 lines) | stat: -rw-r--r-- 8,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/


#include "itkFastMarchingImageToNodePairContainerAdaptor.h"
#include "itkFastMarchingImageFilterBase.h"
#include "itkFastMarchingThresholdStoppingCriterion.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkTextOutput.h"
#include "itkTestingMacros.h"
#include "itkCommand.h"


namespace
{
// The following class is used to support callbacks
// on the filter in the pipeline that follows later
class ShowProgressObject
{
public:
  ShowProgressObject(itk::ProcessObject * o) { m_Process = o; }
  void
  ShowProgress()
  {
    std::cout << "Progress " << m_Process->GetProgress() << std::endl;
  }
  itk::ProcessObject::Pointer m_Process;
};
} // namespace

int
itkFastMarchingImageFilterRealTest2(int itkNotUsed(argc), char * itkNotUsed(argv)[])
{
  itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());

  // Create a Fast Marching image filter object
  using PixelType = float;
  constexpr unsigned int Dimension = 2;

  using FloatImageType = itk::Image<PixelType, Dimension>;

  using CriterionType = itk::FastMarchingThresholdStoppingCriterion<FloatImageType, FloatImageType>;

  using FastMarchingType = itk::FastMarchingImageFilterBase<FloatImageType, FloatImageType>;

  auto criterion = CriterionType::New();
  criterion->SetThreshold(100.);

  auto marcher = FastMarchingType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(marcher, FastMarchingImageFilterBase, FastMarchingBase);


  marcher->SetStoppingCriterion(criterion);

  ShowProgressObject                                    progressWatch(marcher);
  itk::SimpleMemberCommand<ShowProgressObject>::Pointer command = itk::SimpleMemberCommand<ShowProgressObject>::New();
  command->SetCallbackFunction(&progressWatch, &ShowProgressObject::ShowProgress);
  marcher->AddObserver(itk::ProgressEvent(), command);

  // Specify the size of the output image
  FloatImageType::SizeType size = { { 64, 64 } };
  marcher->SetOutputSize(size);

  // Set up a speed image of ones
  auto                       speedImage = FloatImageType::New();
  FloatImageType::RegionType region;
  region.SetSize(size);
  speedImage->SetLargestPossibleRegion(region);
  speedImage->SetBufferedRegion(region);
  speedImage->Allocate();

  // Set up an 'alive image'
  auto aliveImage = FloatImageType::New();
  aliveImage->SetLargestPossibleRegion(region);
  aliveImage->SetBufferedRegion(region);
  aliveImage->Allocate();
  aliveImage->FillBuffer(0.0);

  FloatImageType::OffsetType offset0 = { { 28, 35 } };

  itk::Index<Dimension> index;
  index.Fill(0);
  index += offset0;

  aliveImage->SetPixel(index, 1.0);

  // Set up a 'trial image'
  auto trialImage = FloatImageType::New();
  trialImage->SetLargestPossibleRegion(region);
  trialImage->SetBufferedRegion(region);
  trialImage->Allocate();
  trialImage->FillBuffer(0.0);

  index[0] += 1;
  trialImage->SetPixel(index, 1.0);

  index[0] -= 1;
  index[1] += 1;
  trialImage->SetPixel(index, 1.0);

  index[0] -= 1;
  index[1] -= 1;
  trialImage->SetPixel(index, 1.0);

  index[0] += 1;
  index[1] -= 1;
  trialImage->SetPixel(index, 1.0);

  // Set up a binary mask image in float (to make sure it works with float)
  auto maskImage = FloatImageType::New();
  maskImage->SetLargestPossibleRegion(region);
  maskImage->SetBufferedRegion(region);
  maskImage->Allocate();

  itk::ImageRegionIterator<FloatImageType>          speedIter(speedImage, speedImage->GetBufferedRegion());
  itk::ImageRegionIteratorWithIndex<FloatImageType> maskIter(maskImage, maskImage->GetBufferedRegion());
  while (!speedIter.IsAtEnd())
  {
    speedIter.Set(1.0);
    FloatImageType::IndexType idx = maskIter.GetIndex();
    if (((idx[0] > 22) && (idx[0] < 42) && (idx[1] > 27) && (idx[1] < 37)) ||
        ((idx[1] > 22) && (idx[1] < 42) && (idx[0] > 27) && (idx[0] < 37)))
    {
      maskIter.Set(1.0);
    }
    else
    {
      maskIter.Set(0.0);
    }

    ++maskIter;
    ++speedIter;
  }

  marcher->SetInput(speedImage);

  using AdaptorType = itk::FastMarchingImageToNodePairContainerAdaptor<FloatImageType, FloatImageType, FloatImageType>;

  auto adaptor = AdaptorType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(adaptor, FastMarchingImageToNodePairContainerAdaptor, Object);


  bool isForbiddenImageBinaryMask = true;
  ITK_TEST_SET_GET_BOOLEAN(adaptor, IsForbiddenImageBinaryMask, isForbiddenImageBinaryMask);

  adaptor->SetAliveImage(aliveImage.GetPointer());
  ITK_TEST_SET_GET_VALUE(aliveImage.GetPointer(), adaptor->GetAliveImage());

  typename AdaptorType::OutputPixelType aliveValue = 0.0;
  adaptor->SetAliveValue(aliveValue);
  ITK_TEST_SET_GET_VALUE(aliveValue, adaptor->GetAliveValue());

  adaptor->SetTrialImage(trialImage.GetPointer());
  ITK_TEST_SET_GET_VALUE(trialImage.GetPointer(), adaptor->GetTrialImage());

  typename AdaptorType::OutputPixelType trialValue = 1.0;
  adaptor->SetTrialValue(trialValue);
  ITK_TEST_SET_GET_VALUE(trialValue, adaptor->GetTrialValue());

  adaptor->SetForbiddenImage(maskImage.GetPointer());
  ITK_TEST_SET_GET_VALUE(maskImage.GetPointer(), adaptor->GetForbiddenImage());

  ITK_TRY_EXPECT_NO_EXCEPTION(adaptor->Update());


  marcher->SetForbiddenPoints(adaptor->GetForbiddenPoints());
  ITK_TEST_SET_GET_VALUE(adaptor->GetForbiddenPoints(), marcher->GetForbiddenPoints());

  marcher->SetAlivePoints(adaptor->GetAlivePoints());
  marcher->SetTrialPoints(adaptor->GetTrialPoints());

  // Turn on debugging
  marcher->DebugOn();

  // Update the Fast Marching filter
  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());


  // Check the results
  FloatImageType::Pointer output = marcher->GetOutput();

  itk::ImageRegionIterator<FloatImageType> iterator(output, output->GetBufferedRegion());

  bool passed = true;

  double threshold = 1.42;
  while (!iterator.IsAtEnd())
  {
    FloatImageType::IndexType tempIndex = iterator.GetIndex();
    auto                      outputValue = static_cast<double>(iterator.Get());

    if (((tempIndex[0] > 22) && (tempIndex[0] < 42) && (tempIndex[1] > 27) && (tempIndex[1] < 37)) ||
        ((tempIndex[1] > 22) && (tempIndex[1] < 42) && (tempIndex[0] > 27) && (tempIndex[0] < 37)))
    {
      tempIndex -= offset0;
      double distance = 0.0;
      for (unsigned int j = 0; j < Dimension; ++j)
      {
        distance += tempIndex[j] * tempIndex[j];
      }
      distance = std::sqrt(distance);

      if (distance > itk::NumericTraits<double>::epsilon())
      {
        if (itk::Math::abs(outputValue) / distance > threshold)
        {
          std::cout << "Error at index [" << iterator.GetIndex() << ']' << std::endl;
          std::cout << "Expected scaled output value be less than: " << threshold
                    << ", but got: " << itk::Math::abs(outputValue) / distance
                    << ", where output: " << itk::Math::abs(outputValue) << "; scale factor: " << distance << std::endl;
          passed = false;
        }
      }
    }
    else
    {
      if (outputValue != 0.)
      {
        std::cout << "Error at index [" << iterator.GetIndex() << ']' << std::endl;
        std::cout << "Expected output value: " << 0. << ", but got: " << outputValue << std::endl;
        passed = false;
      }
    }
    ++iterator;
  }


  if (passed)
  {
    std::cout << "Test passed!" << std::endl;
    return EXIT_SUCCESS;
  }
  else
  {
    std::cout << "Test failed!" << std::endl;
    return EXIT_FAILURE;
  }
}