File: itkFastMarchingImageFilterRealWithNumberOfElementsTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (173 lines) | stat: -rw-r--r-- 4,546 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/


#include "itkFastMarchingImageFilterBase.h"
#include "itkFastMarchingNumberOfElementsStoppingCriterion.h"

#include "itkBinaryThresholdImageFilter.h"
#include "itkImageRegionConstIterator.h"
#include "itkTestingMacros.h"


int
itkFastMarchingImageFilterRealWithNumberOfElementsTest(int, char *[])
{
  // create a fastmarching object
  using PixelType = float;
  constexpr unsigned int Dimension = 2;

  using FloatImageType = itk::Image<PixelType, Dimension>;

  using CriterionType = itk::FastMarchingNumberOfElementsStoppingCriterion<FloatImageType, FloatImageType>;

  using FastMarchingType = itk::FastMarchingImageFilterBase<FloatImageType, FloatImageType>;

  auto criterion = CriterionType::New();
  criterion->SetTargetNumberOfElements(100);

  auto marcher = FastMarchingType::New();
  marcher->SetStoppingCriterion(criterion);

  using NodePairType = FastMarchingType::NodePairType;
  //  using NodeContainerType = FastMarchingType::NodeContainerType;
  using NodePairContainerType = FastMarchingType::NodePairContainerType;

  // setup alive points
  auto alive = NodePairContainerType::New();

  NodePairType node_pair;

  FloatImageType::OffsetType offset0 = { { 28, 35 } };

  itk::Index<2> index;
  index.Fill(0);

  node_pair.SetValue(0.0);
  node_pair.SetNode(index + offset0);
  alive->push_back(node_pair);

  node_pair.SetValue(42.0);
  index.Fill(200);
  node_pair.SetNode(index); // this node is out of range

  alive->push_back(node_pair);

  marcher->SetAlivePoints(alive);

  // setup trial points
  auto trial = NodePairContainerType::New();
  node_pair.SetValue(1.0);

  index.Fill(0);
  index += offset0;

  index[0] += 1;
  node_pair.SetNode(index);
  trial->push_back(node_pair);

  index[0] -= 1;
  index[1] += 1;
  node_pair.SetNode(index);
  trial->push_back(node_pair);

  index[0] -= 1;
  index[1] -= 1;
  node_pair.SetNode(index);
  trial->push_back(node_pair);

  index[0] += 1;
  index[1] -= 1;
  node_pair.SetNode(index);
  trial->push_back(node_pair);

  node_pair.SetValue(42.0);
  index.Fill(300); // this node is out of range
  node_pair.SetNode(index);
  trial->push_back(node_pair);

  marcher->SetTrialPoints(trial);

  // specify the size of the output image
  FloatImageType::SizeType size = { { 64, 64 } };
  marcher->SetOutputSize(size);

  // setup a speed image of ones
  auto                       speedImage = FloatImageType::New();
  FloatImageType::RegionType region;
  region.SetSize(size);
  speedImage->SetLargestPossibleRegion(region);
  speedImage->SetBufferedRegion(region);
  speedImage->Allocate();

  itk::ImageRegionIterator<FloatImageType> speedIter(speedImage, speedImage->GetBufferedRegion());
  while (!speedIter.IsAtEnd())
  {
    speedIter.Set(1.0);
    ++speedIter;
  }

  marcher->SetInput(speedImage);

  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());


  using OutputPixelType = char;

  using OutputImageType = itk::Image<OutputPixelType, Dimension>;

  using ThresholdingFilterType = itk::BinaryThresholdImageFilter<FloatImageType, OutputImageType>;

  auto thresholder = ThresholdingFilterType::New();

  thresholder->SetLowerThreshold(0.0);
  thresholder->SetUpperThreshold(100.0);
  thresholder->SetOutsideValue(0);
  thresholder->SetInsideValue(1);
  thresholder->SetInput(marcher->GetOutput());

  ITK_TRY_EXPECT_NO_EXCEPTION(thresholder->Update());


  OutputImageType::Pointer output = thresholder->GetOutput();

  using OutputIteratorType = itk::ImageRegionConstIterator<OutputImageType>;

  OutputIteratorType it(output, output->GetLargestPossibleRegion());
  it.GoToBegin();

  unsigned int counter = 0;

  while (!it.IsAtEnd())
  {
    if (it.Get() == 1)
    {
      ++counter;
    }
    ++it;
  }

  if (counter >= 100)
  {
    return EXIT_SUCCESS;
  }
  else
  {
    return EXIT_FAILURE;
  }
}