File: itkFastMarchingUpwindGradientBaseTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (248 lines) | stat: -rw-r--r-- 7,965 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/


#include "itkFastMarchingUpwindGradientImageFilterBase.h"
#include "itkFastMarchingReachedTargetNodesStoppingCriterion.h"
#include "itkTextOutput.h"
#include "itkSimpleFilterWatcher.h"
#include "itkMath.h"
#include "itkTestingMacros.h"

// namespace{
//// The following class is used to support callbacks
//// on the filter in the pipeline that follows later
// class ShowProgressObject
//{
// public:
//  ShowProgressObject(itk::ProcessObject* o)
//    {m_Process = o;}
//  void ShowProgress()
//    {std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
//  itk::ProcessObject::Pointer m_Process;
//};
//}

int
itkFastMarchingUpwindGradientBaseTest(int, char *[])
{

  itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());

  // create a fastmarching object
  using PixelType = float;
  constexpr unsigned int Dimension = 2;

  using FloatImageType = itk::Image<PixelType, Dimension>;

  using CriterionType = itk::FastMarchingReachedTargetNodesStoppingCriterion<FloatImageType, FloatImageType>;

  auto criterion = CriterionType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(
    criterion, FastMarchingReachedTargetNodesStoppingCriterion, FastMarchingStoppingCriterionBase);


  using FloatFMType = itk::FastMarchingUpwindGradientImageFilterBase<FloatImageType, FloatImageType>;

  auto marcher = FloatFMType::New();

  //   ShowProgressObject progressWatch(marcher);
  //   itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
  //   command = itk::SimpleMemberCommand<ShowProgressObject>::New();
  //   command->SetCallbackFunction(&progressWatch,
  //                                &ShowProgressObject::ShowProgress);
  //   marcher->AddObserver( itk::ProgressEvent(), command);

  itk::SimpleFilterWatcher MarcherWatcher(marcher);

  using NodeType = FloatFMType::NodeType;
  using NodePairType = FloatFMType::NodePairType;

  using NodePairContainerType = FloatFMType::NodePairContainerType;

  // setup alive points
  auto AlivePoints = NodePairContainerType::New();

  FloatImageType::OffsetType offset0 = { { 28, 35 } };

  itk::Index<2> index;
  index.Fill(0);

  AlivePoints->push_back(NodePairType(index + offset0, 0.));
  AlivePoints->push_back(NodePairType(index + offset0, 42.));

  marcher->SetAlivePoints(AlivePoints);

  // setup trial points
  auto TrialPoints = NodePairContainerType::New();

  index.Fill(0);
  index += offset0;

  index[0] += 1;
  TrialPoints->push_back(NodePairType(index, 1.));

  index[0] -= 1;
  index[1] += 1;
  TrialPoints->push_back(NodePairType(index, 1.));

  index[0] -= 1;
  index[1] -= 1;
  TrialPoints->push_back(NodePairType(index, 1.));

  index[0] += 1;
  index[1] -= 1;
  TrialPoints->push_back(NodePairType(index, 1.));

  index.Fill(300); // this node is out of range
  TrialPoints->push_back(NodePairType(index, 42.));

  marcher->SetTrialPoints(TrialPoints);

  // specify the size of the output image
  FloatImageType::SizeType size = { { 64, 64 } };
  marcher->SetOutputSize(size);

  // setup a speed image of ones
  auto                       speedImage = FloatImageType::New();
  FloatImageType::RegionType region;
  region.SetSize(size);
  speedImage->SetLargestPossibleRegion(region);
  speedImage->SetBufferedRegion(region);
  speedImage->Allocate();

  itk::ImageRegionIterator<FloatImageType> speedIter(speedImage, speedImage->GetBufferedRegion());

  while (!speedIter.IsAtEnd())
  {
    speedIter.Set(1.0);
    ++speedIter;
  }

  //  speedImage->Print( std::cout );
  marcher->SetInput(speedImage);

  // check the results
  using FloatGradientImage = FloatFMType::GradientImageType;
  using GradientPixelType = FloatGradientImage::PixelType;
  FloatGradientImage::Pointer                  gradientOutput = marcher->GetGradientImage();
  itk::ImageRegionIterator<FloatGradientImage> iterator(gradientOutput, gradientOutput->GetBufferedRegion());

  bool passed = true;

  while (!iterator.IsAtEnd())
  {
    FloatGradientImage::IndexType tempIndex;
    double                        distance;
    GradientPixelType             outputPixel;

    tempIndex = iterator.GetIndex();
    tempIndex -= offset0;
    distance = 0.0;
    for (int j = 0; j < 2; ++j)
    {
      distance += tempIndex[j] * tempIndex[j];
    }
    distance = std::sqrt(distance);

    outputPixel = iterator.Get();

    double outputPixelNorm{ outputPixel.GetNorm() };

    if (itk::Math::AlmostEquals(distance, 0.0))
    {
      continue;
    }

    // for test to pass, gradient vectors must have norm = 1
    // (equal to the rhs of the Eikonal equation)
    // and must be oriented radially from the seed point

    double dot = 0.0;
    for (int j = 0; j < 2; ++j)
    {
      dot += tempIndex[j] / distance * outputPixel[j];
    }

    if ((outputPixelNorm < 0.9999) || (outputPixelNorm > 1.0001) || (dot < 0.99) || (dot > 1.01))
    {
      std::cout << iterator.GetIndex() << ' ';
      std::cout << outputPixelNorm << ' ';
      std::cout << dot << std::endl;
      passed = false;
    }

    ++iterator;
  }

  // Set up target points.
  // The algorithm will stop when it reaches these points.
  // This point is closest to the AlivePoint:
  constexpr FloatImageType::OffsetType offset1 = { { 50, 50 } };
  constexpr FloatImageType::OffsetType offset2 = { { 40, 40 } };
  // This point is farthest from the AlivePoint:
  constexpr FloatImageType::OffsetType          offset3 = { { 0, 0 } };
  const std::vector<FloatImageType::OffsetType> targetOffsets{ offset1, offset2, offset3 };

  std::vector<NodeType> TargetNodes;
  for (const auto targetOffset : targetOffsets)
  {
    TargetNodes.push_back(index + targetOffset);
  }
  criterion->SetTargetNodes(TargetNodes);

  typename CriterionType::OutputPixelType targetOffset{};
  criterion->SetTargetOffset(targetOffset);
  ITK_TEST_SET_GET_VALUE(targetOffset, criterion->GetTargetOffset());

  // Stop the algorithm when ONE of the targets has been reached.
  auto targetCondition = CriterionType::TargetConditionEnum::OneTarget;
  criterion->SetTargetCondition(targetCondition);
  ITK_TEST_SET_GET_VALUE(targetCondition, criterion->GetTargetCondition());


  std::cout << "Criterion description: " << criterion->GetDescription() << std::endl;

  marcher->SetStoppingCriterion(criterion);

  marcher->Update();

  // Test streaming enumeration for FastMarchingReachedTargetNodesStoppingCriterionEnums::TargetCondition elements
  const std::set<itk::FastMarchingReachedTargetNodesStoppingCriterionEnums::TargetCondition> allTargetCondition{
    itk::FastMarchingReachedTargetNodesStoppingCriterionEnums::TargetCondition::OneTarget,
    itk::FastMarchingReachedTargetNodesStoppingCriterionEnums::TargetCondition::SomeTargets,
    itk::FastMarchingReachedTargetNodesStoppingCriterionEnums::TargetCondition::AllTargets
  };
  for (const auto & ee : allTargetCondition)
  {
    std::cout << "STREAMED ENUM VALUE FastMarchingReachedTargetNodesStoppingCriterionEnums::TargetCondition: " << ee
              << std::endl;
  }

  if (passed)
  {
    std::cout << "Fast Marching Upwind Gradient test passed" << std::endl;
    return EXIT_SUCCESS;
  }
  else
  {
    std::cout << "Fast Marching Upwind Gradient test failed" << std::endl;
    return EXIT_FAILURE;
  }
}