1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkFastMarchingUpwindGradientImageFilter.h"
#include "itkTextOutput.h"
#include "itkSimpleFilterWatcher.h"
#include "itkMath.h"
#include "itkTestingMacros.h"
// namespace{
//// The following class is used to support callbacks
//// on the filter in the pipeline that follows later
// class ShowProgressObject
//{
// public:
// ShowProgressObject(itk::ProcessObject* o)
// {m_Process = o;}
// void ShowProgress()
// {std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
// itk::ProcessObject::Pointer m_Process;
//};
//}
int
itkFastMarchingUpwindGradientTest(int, char *[])
{
itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());
// create a fastmarching object
using PixelType = float;
using FloatImage = itk::Image<PixelType, 2>;
using FloatFMType = itk::FastMarchingUpwindGradientImageFilter<FloatImage, FloatImage>;
auto marcher = FloatFMType::New();
ITK_EXERCISE_BASIC_OBJECT_METHODS(marcher, FastMarchingUpwindGradientImageFilter, FastMarchingImageFilter);
// ShowProgressObject progressWatch(marcher);
// itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
// command = itk::SimpleMemberCommand<ShowProgressObject>::New();
// command->SetCallbackFunction(&progressWatch,
// &ShowProgressObject::ShowProgress);
// marcher->AddObserver( itk::ProgressEvent(), command);
itk::SimpleFilterWatcher MarcherWatcher(marcher);
using NodeType = FloatFMType::NodeType;
using NodeContainer = FloatFMType::NodeContainer;
// setup alive points
auto alivePoints = NodeContainer::New();
NodeType node;
FloatImage::OffsetType offset0 = { { 28, 35 } };
itk::Index<2> index;
index.Fill(0);
node.SetValue(0.0);
node.SetIndex(index + offset0);
alivePoints->InsertElement(0, node);
node.SetValue(42.0);
index.Fill(200);
node.SetIndex(index); // this node is out of range
alivePoints->InsertElement(1, node);
marcher->SetAlivePoints(alivePoints);
// setup trial points
auto trialPoints = NodeContainer::New();
node.SetValue(1.0);
index.Fill(0);
index += offset0;
index[0] += 1;
node.SetIndex(index);
trialPoints->InsertElement(0, node);
index[0] -= 1;
index[1] += 1;
node.SetIndex(index);
trialPoints->InsertElement(1, node);
index[0] -= 1;
index[1] -= 1;
node.SetIndex(index);
trialPoints->InsertElement(2, node);
index[0] += 1;
index[1] -= 1;
node.SetIndex(index);
trialPoints->InsertElement(3, node);
node.SetValue(42.0);
index.Fill(300); // this node is out of range
node.SetIndex(index);
trialPoints->InsertElement(4, node);
marcher->SetTrialPoints(trialPoints);
// specify the size of the output image
FloatImage::SizeType size = { { 64, 64 } };
marcher->SetOutputSize(size);
// setup a speed image of ones
auto speedImage = FloatImage::New();
FloatImage::RegionType region;
region.SetSize(size);
speedImage->SetLargestPossibleRegion(region);
speedImage->SetBufferedRegion(region);
speedImage->Allocate();
itk::ImageRegionIterator<FloatImage> speedIter(speedImage, speedImage->GetBufferedRegion());
for (; !speedIter.IsAtEnd(); ++speedIter)
{
speedIter.Set(1.0);
}
// speedImage->Print( std::cout );
marcher->SetInput(speedImage);
double stoppingValue = 100.0;
marcher->SetStoppingValue(stoppingValue);
ITK_TEST_SET_GET_VALUE(stoppingValue, marcher->GetStoppingValue());
bool generateGradientImage = true;
ITK_TEST_SET_GET_BOOLEAN(marcher, GenerateGradientImage, generateGradientImage);
// Exercise this member function.
// It is also necessary that the TargetOffset be set to 0.0 for the TargetReached
// tests to pass.
double targetOffset = 0.0;
marcher->SetTargetOffset(targetOffset);
ITK_TEST_SET_GET_VALUE(targetOffset, marcher->GetTargetOffset());
// Test exceptions
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToOneTarget());
ITK_TRY_EXPECT_EXCEPTION(marcher->Update());
itk::SizeValueType numberOfTargets = 0;
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToSomeTargets(numberOfTargets));
ITK_TEST_SET_GET_VALUE(numberOfTargets, marcher->GetNumberOfTargets());
ITK_TRY_EXPECT_EXCEPTION(marcher->Update());
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToAllTargets());
ITK_TRY_EXPECT_EXCEPTION(marcher->Update());
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToNoTargets());
// turn on debugging
// marcher->DebugOn();
// update the marcher
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());
// check the results
using FloatGradientImage = FloatFMType::GradientImageType;
using GradientPixelType = FloatGradientImage::PixelType;
FloatGradientImage::Pointer gradientOutput = marcher->GetGradientImage();
itk::ImageRegionIterator<FloatGradientImage> iterator(gradientOutput, gradientOutput->GetBufferedRegion());
bool passed = true;
for (; !iterator.IsAtEnd(); ++iterator)
{
FloatGradientImage::IndexType tempIndex;
double distance;
GradientPixelType outputPixel;
tempIndex = iterator.GetIndex();
tempIndex -= offset0;
distance = 0.0;
for (int j = 0; j < 2; ++j)
{
distance += tempIndex[j] * tempIndex[j];
}
distance = std::sqrt(distance);
outputPixel = iterator.Get();
double outputPixelNorm{ outputPixel.GetNorm() };
if (distance == 0.0)
{
continue;
}
// for test to pass, gradient vectors must have norm = 1
// (equal to the rhs of the Eikonal equation)
// and must be oriented radially from the seed point
double dot = 0.0;
for (int j = 0; j < 2; ++j)
{
dot += tempIndex[j] / distance * outputPixel[j];
}
if (outputPixelNorm < 0.9999 || outputPixelNorm > 1.0001 || dot < 0.99 || dot > 1.01)
{
std::cout << iterator.GetIndex() << ' ';
std::cout << outputPixelNorm << ' ';
std::cout << dot << std::endl;
passed = false;
}
}
// Set up target points.
// The algorithm will stop when it reaches these points.
// This point is closest to the AlivePoint:
constexpr FloatImage::OffsetType offset2 = { { 40, 40 } };
constexpr FloatImage::OffsetType offset1 = { { 50, 50 } };
// This point is farthest from the AlivePoint:
constexpr FloatImage::OffsetType offset3 = { { 0, 0 } };
using VectorType = std::vector<FloatImage::OffsetType>;
const VectorType targetOffsets{ offset1, offset2, offset3 };
index.Fill(0);
node.SetValue(0.0);
auto targetPoints = NodeContainer::New();
for (unsigned int i = 0, _end = targetOffsets.size(); i < _end; ++i)
{
node.SetIndex(index + targetOffsets[i]);
targetPoints->InsertElement(i, node);
}
marcher->SetTargetPoints(targetPoints);
ITK_TEST_SET_GET_VALUE(targetPoints, marcher->GetTargetPoints());
// The target reached mode is set to no targets by default
#if !defined(ITK_LEGACY_REMOVE)
ITK_TEST_SET_GET_VALUE(FloatFMType::NoTargets, marcher->GetTargetReachedMode());
#endif
ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::NoTargets, marcher->GetTargetReachedMode());
numberOfTargets = 0;
ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetNumberOfTargets());
// Stop the algorithm when ONE of the targets has been reached.
#if !defined(ITK_LEGACY_REMOVE)
marcher->SetTargetReachedModeToOneTarget();
ITK_TEST_SET_GET_VALUE(FloatFMType::OneTarget, marcher->GetTargetReachedMode());
#endif
marcher->SetTargetReachedModeToOneTarget();
ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::OneTarget, marcher->GetTargetReachedMode());
numberOfTargets = 1;
ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetNumberOfTargets());
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());
ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetReachedTargetPoints()->Size());
// Find the smallest reaching time of the TargetPoints. This is the time of the closest
// TargetPoint.
FloatFMType::PixelType smallestReachingTime = itk::NumericTraits<PixelType>::max();
for (const auto & offset : targetOffsets)
{
if (marcher->GetOutput()->GetPixel(index + offset) < smallestReachingTime)
{
smallestReachingTime = marcher->GetOutput()->GetPixel(index + offset);
}
}
// Since the algorithm is in OneTarget mode and the
// TargetOffset is set to 0, the TargetValue should be equal to
// the reaching time of the closest TargetPoint.
if (itk::Math::NotAlmostEquals(smallestReachingTime, marcher->GetTargetValue()))
{
std::cerr << "ERROR: TargetValue does not equal reaching time of closest point!" << std::endl;
passed = false;
}
// Now stop the algorithm once SOME of the targets have been reached.
numberOfTargets = targetPoints->Size() + 1;
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToSomeTargets(numberOfTargets));
ITK_TRY_EXPECT_EXCEPTION(marcher->Update());
numberOfTargets = targetPoints->Size() - 1;
marcher->SetTargetReachedModeToSomeTargets(numberOfTargets);
#if !defined(ITK_LEGACY_REMOVE)
ITK_TEST_SET_GET_VALUE(FloatFMType::SomeTargets, marcher->GetTargetReachedMode());
#endif
ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::SomeTargets, marcher->GetTargetReachedMode());
ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetNumberOfTargets());
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());
ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetReachedTargetPoints()->Size());
// Now stop the algorithm once ALL of the targets have been reached.
marcher->SetTargetReachedModeToAllTargets();
#if !defined(ITK_LEGACY_REMOVE)
ITK_TEST_SET_GET_VALUE(FloatFMType::AllTargets, marcher->GetTargetReachedMode());
#endif
ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::AllTargets, marcher->GetTargetReachedMode());
numberOfTargets = targetPoints->Size();
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());
ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetReachedTargetPoints()->Size());
// Find the largest reaching time of the TargetPoints. This is the largest time of
// all of the target points.
FloatFMType::PixelType largestReachingTime = itk::NumericTraits<PixelType>::NonpositiveMin();
for (const auto & offset : targetOffsets)
{
if (marcher->GetOutput()->GetPixel(index + offset) > largestReachingTime)
{
largestReachingTime = marcher->GetOutput()->GetPixel(index + offset);
}
}
// Since the algorithm is now in AllTargets mode and the
// TargetOffset is set to 0, the TargetValue should be equal to
// the largest reaching time of the TargetPoints.
if (itk::Math::NotAlmostEquals(largestReachingTime, marcher->GetTargetValue()))
{
std::cerr << "ERROR: TargetValue does not equal reaching time of farthest point!" << std::endl;
passed = false;
}
// Now check to make sure that stoppingValue is reset correctly.
marcher->SetTargetReachedModeToNoTargets();
#if !defined(ITK_LEGACY_REMOVE)
ITK_TEST_SET_GET_VALUE(FloatFMType::NoTargets, marcher->GetTargetReachedMode());
#endif
ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::NoTargets, marcher->GetTargetReachedMode());
double newStoppingValue = 10.0;
marcher->SetStoppingValue(newStoppingValue);
ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());
if (itk::Math::NotExactlyEquals(marcher->GetStoppingValue(), newStoppingValue))
{
std::cerr << "ERROR: Output stopping value does not equal new stopping value!" << std::endl;
passed = false;
}
// Exercise other member functions
std::cout << "SpeedConstant: " << marcher->GetSpeedConstant() << std::endl;
std::cout << "CollectPoints: " << marcher->GetCollectPoints() << std::endl;
marcher->SetNormalizationFactor(2.0);
std::cout << "NormalizationFactor: " << marcher->GetNormalizationFactor();
std::cout << std::endl;
std::cout << "SpeedImage: " << marcher->GetInput();
std::cout << std::endl;
// Test streaming enumeration for FastMarchingUpwindGradientImageFilterEnums::TargetCondition elements
const std::set<itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition> allConditions{
itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition::NoTargets,
itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition::OneTarget,
itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition::SomeTargets,
itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition::AllTargets
};
for (const auto & ee : allConditions)
{
std::ostringstream ss;
ss << ee;
ITK_TEST_EXPECT_TRUE(ss.str().find("INVALID") == std::string::npos);
}
if (passed)
{
std::cout << "Fast Marching Upwind Gradient test passed" << std::endl;
return EXIT_SUCCESS;
}
else
{
std::cout << "Fast Marching Upwind Gradient test failed" << std::endl;
return EXIT_FAILURE;
}
}
|