File: itkFastMarchingUpwindGradientTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (406 lines) | stat: -rw-r--r-- 13,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkFastMarchingUpwindGradientImageFilter.h"
#include "itkTextOutput.h"
#include "itkSimpleFilterWatcher.h"
#include "itkMath.h"
#include "itkTestingMacros.h"


// namespace{
//// The following class is used to support callbacks
//// on the filter in the pipeline that follows later
// class ShowProgressObject
//{
// public:
//  ShowProgressObject(itk::ProcessObject* o)
//    {m_Process = o;}
//  void ShowProgress()
//    {std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
//  itk::ProcessObject::Pointer m_Process;
//};
//}

int
itkFastMarchingUpwindGradientTest(int, char *[])
{

  itk::OutputWindow::SetInstance(itk::TextOutput::New().GetPointer());

  // create a fastmarching object
  using PixelType = float;
  using FloatImage = itk::Image<PixelType, 2>;
  using FloatFMType = itk::FastMarchingUpwindGradientImageFilter<FloatImage, FloatImage>;

  auto marcher = FloatFMType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(marcher, FastMarchingUpwindGradientImageFilter, FastMarchingImageFilter);


  //   ShowProgressObject progressWatch(marcher);
  //   itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
  //   command = itk::SimpleMemberCommand<ShowProgressObject>::New();
  //   command->SetCallbackFunction(&progressWatch,
  //                                &ShowProgressObject::ShowProgress);
  //   marcher->AddObserver( itk::ProgressEvent(), command);

  itk::SimpleFilterWatcher MarcherWatcher(marcher);

  using NodeType = FloatFMType::NodeType;
  using NodeContainer = FloatFMType::NodeContainer;

  // setup alive points
  auto alivePoints = NodeContainer::New();

  NodeType node;

  FloatImage::OffsetType offset0 = { { 28, 35 } };

  itk::Index<2> index;
  index.Fill(0);

  node.SetValue(0.0);
  node.SetIndex(index + offset0);
  alivePoints->InsertElement(0, node);

  node.SetValue(42.0);
  index.Fill(200);
  node.SetIndex(index); // this node is out of range
  alivePoints->InsertElement(1, node);

  marcher->SetAlivePoints(alivePoints);


  // setup trial points
  auto trialPoints = NodeContainer::New();

  node.SetValue(1.0);

  index.Fill(0);
  index += offset0;

  index[0] += 1;
  node.SetIndex(index);
  trialPoints->InsertElement(0, node);

  index[0] -= 1;
  index[1] += 1;
  node.SetIndex(index);
  trialPoints->InsertElement(1, node);

  index[0] -= 1;
  index[1] -= 1;
  node.SetIndex(index);
  trialPoints->InsertElement(2, node);

  index[0] += 1;
  index[1] -= 1;
  node.SetIndex(index);
  trialPoints->InsertElement(3, node);

  node.SetValue(42.0);
  index.Fill(300); // this node is out of range
  node.SetIndex(index);
  trialPoints->InsertElement(4, node);

  marcher->SetTrialPoints(trialPoints);

  // specify the size of the output image
  FloatImage::SizeType size = { { 64, 64 } };
  marcher->SetOutputSize(size);

  // setup a speed image of ones
  auto                   speedImage = FloatImage::New();
  FloatImage::RegionType region;
  region.SetSize(size);
  speedImage->SetLargestPossibleRegion(region);
  speedImage->SetBufferedRegion(region);
  speedImage->Allocate();

  itk::ImageRegionIterator<FloatImage> speedIter(speedImage, speedImage->GetBufferedRegion());
  for (; !speedIter.IsAtEnd(); ++speedIter)
  {
    speedIter.Set(1.0);
  }

  //  speedImage->Print( std::cout );
  marcher->SetInput(speedImage);
  double stoppingValue = 100.0;
  marcher->SetStoppingValue(stoppingValue);
  ITK_TEST_SET_GET_VALUE(stoppingValue, marcher->GetStoppingValue());

  bool generateGradientImage = true;
  ITK_TEST_SET_GET_BOOLEAN(marcher, GenerateGradientImage, generateGradientImage);

  // Exercise this member function.
  // It is also necessary that the TargetOffset be set to 0.0 for the TargetReached
  // tests to pass.
  double targetOffset = 0.0;
  marcher->SetTargetOffset(targetOffset);
  ITK_TEST_SET_GET_VALUE(targetOffset, marcher->GetTargetOffset());


  // Test exceptions
  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToOneTarget());
  ITK_TRY_EXPECT_EXCEPTION(marcher->Update());

  itk::SizeValueType numberOfTargets = 0;
  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToSomeTargets(numberOfTargets));
  ITK_TEST_SET_GET_VALUE(numberOfTargets, marcher->GetNumberOfTargets());
  ITK_TRY_EXPECT_EXCEPTION(marcher->Update());

  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToAllTargets());
  ITK_TRY_EXPECT_EXCEPTION(marcher->Update());

  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToNoTargets());

  // turn on debugging
  // marcher->DebugOn();

  // update the marcher
  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());

  // check the results
  using FloatGradientImage = FloatFMType::GradientImageType;
  using GradientPixelType = FloatGradientImage::PixelType;
  FloatGradientImage::Pointer                  gradientOutput = marcher->GetGradientImage();
  itk::ImageRegionIterator<FloatGradientImage> iterator(gradientOutput, gradientOutput->GetBufferedRegion());

  bool passed = true;

  for (; !iterator.IsAtEnd(); ++iterator)
  {

    FloatGradientImage::IndexType tempIndex;
    double                        distance;
    GradientPixelType             outputPixel;

    tempIndex = iterator.GetIndex();
    tempIndex -= offset0;
    distance = 0.0;
    for (int j = 0; j < 2; ++j)
    {
      distance += tempIndex[j] * tempIndex[j];
    }
    distance = std::sqrt(distance);

    outputPixel = iterator.Get();

    double outputPixelNorm{ outputPixel.GetNorm() };

    if (distance == 0.0)
    {
      continue;
    }

    // for test to pass, gradient vectors must have norm = 1
    // (equal to the rhs of the Eikonal equation)
    // and must be oriented radially from the seed point

    double dot = 0.0;
    for (int j = 0; j < 2; ++j)
    {
      dot += tempIndex[j] / distance * outputPixel[j];
    }

    if (outputPixelNorm < 0.9999 || outputPixelNorm > 1.0001 || dot < 0.99 || dot > 1.01)
    {
      std::cout << iterator.GetIndex() << ' ';
      std::cout << outputPixelNorm << ' ';
      std::cout << dot << std::endl;
      passed = false;
    }
  }


  // Set up target points.
  // The algorithm will stop when it reaches these points.
  // This point is closest to the AlivePoint:
  constexpr FloatImage::OffsetType offset2 = { { 40, 40 } };
  constexpr FloatImage::OffsetType offset1 = { { 50, 50 } };
  // This point is farthest from the AlivePoint:
  constexpr FloatImage::OffsetType offset3 = { { 0, 0 } };
  using VectorType = std::vector<FloatImage::OffsetType>;
  const VectorType targetOffsets{ offset1, offset2, offset3 };

  index.Fill(0);
  node.SetValue(0.0);
  auto targetPoints = NodeContainer::New();
  for (unsigned int i = 0, _end = targetOffsets.size(); i < _end; ++i)
  {
    node.SetIndex(index + targetOffsets[i]);
    targetPoints->InsertElement(i, node);
  }
  marcher->SetTargetPoints(targetPoints);
  ITK_TEST_SET_GET_VALUE(targetPoints, marcher->GetTargetPoints());

  // The target reached mode is set to no targets by default
#if !defined(ITK_LEGACY_REMOVE)
  ITK_TEST_SET_GET_VALUE(FloatFMType::NoTargets, marcher->GetTargetReachedMode());
#endif
  ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::NoTargets, marcher->GetTargetReachedMode());

  numberOfTargets = 0;
  ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetNumberOfTargets());

  // Stop the algorithm when ONE of the targets has been reached.
#if !defined(ITK_LEGACY_REMOVE)
  marcher->SetTargetReachedModeToOneTarget();
  ITK_TEST_SET_GET_VALUE(FloatFMType::OneTarget, marcher->GetTargetReachedMode());
#endif
  marcher->SetTargetReachedModeToOneTarget();
  ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::OneTarget, marcher->GetTargetReachedMode());

  numberOfTargets = 1;
  ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetNumberOfTargets());

  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());


  ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetReachedTargetPoints()->Size());

  // Find the smallest reaching time of the TargetPoints.  This is the time of the closest
  // TargetPoint.
  FloatFMType::PixelType smallestReachingTime = itk::NumericTraits<PixelType>::max();
  for (const auto & offset : targetOffsets)
  {
    if (marcher->GetOutput()->GetPixel(index + offset) < smallestReachingTime)
    {
      smallestReachingTime = marcher->GetOutput()->GetPixel(index + offset);
    }
  }

  // Since the algorithm is in OneTarget mode and the
  // TargetOffset is set to 0, the TargetValue should be equal to
  // the reaching time of the closest TargetPoint.
  if (itk::Math::NotAlmostEquals(smallestReachingTime, marcher->GetTargetValue()))
  {
    std::cerr << "ERROR: TargetValue does not equal reaching time of closest point!" << std::endl;
    passed = false;
  }

  // Now stop the algorithm once SOME of the targets have been reached.
  numberOfTargets = targetPoints->Size() + 1;
  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->SetTargetReachedModeToSomeTargets(numberOfTargets));
  ITK_TRY_EXPECT_EXCEPTION(marcher->Update());

  numberOfTargets = targetPoints->Size() - 1;
  marcher->SetTargetReachedModeToSomeTargets(numberOfTargets);
#if !defined(ITK_LEGACY_REMOVE)
  ITK_TEST_SET_GET_VALUE(FloatFMType::SomeTargets, marcher->GetTargetReachedMode());
#endif
  ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::SomeTargets, marcher->GetTargetReachedMode());

  ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetNumberOfTargets());

  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());


  ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetReachedTargetPoints()->Size());

  // Now stop the algorithm once ALL of the targets have been reached.
  marcher->SetTargetReachedModeToAllTargets();
#if !defined(ITK_LEGACY_REMOVE)
  ITK_TEST_SET_GET_VALUE(FloatFMType::AllTargets, marcher->GetTargetReachedMode());
#endif
  ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::AllTargets, marcher->GetTargetReachedMode());

  numberOfTargets = targetPoints->Size();

  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());


  ITK_TEST_EXPECT_EQUAL(numberOfTargets, marcher->GetReachedTargetPoints()->Size());

  // Find the largest reaching time of the TargetPoints.  This is the largest time of
  // all of the target points.
  FloatFMType::PixelType largestReachingTime = itk::NumericTraits<PixelType>::NonpositiveMin();
  for (const auto & offset : targetOffsets)
  {
    if (marcher->GetOutput()->GetPixel(index + offset) > largestReachingTime)
    {
      largestReachingTime = marcher->GetOutput()->GetPixel(index + offset);
    }
  }

  // Since the algorithm is now in AllTargets mode and the
  // TargetOffset is set to 0, the TargetValue should be equal to
  // the largest reaching time of the TargetPoints.
  if (itk::Math::NotAlmostEquals(largestReachingTime, marcher->GetTargetValue()))
  {
    std::cerr << "ERROR: TargetValue does not equal reaching time of farthest point!" << std::endl;
    passed = false;
  }

  // Now check to make sure that stoppingValue is reset correctly.
  marcher->SetTargetReachedModeToNoTargets();
#if !defined(ITK_LEGACY_REMOVE)
  ITK_TEST_SET_GET_VALUE(FloatFMType::NoTargets, marcher->GetTargetReachedMode());
#endif
  ITK_TEST_SET_GET_VALUE(FloatFMType::TargetConditionEnum::NoTargets, marcher->GetTargetReachedMode());

  double newStoppingValue = 10.0;
  marcher->SetStoppingValue(newStoppingValue);

  ITK_TRY_EXPECT_NO_EXCEPTION(marcher->Update());


  if (itk::Math::NotExactlyEquals(marcher->GetStoppingValue(), newStoppingValue))
  {
    std::cerr << "ERROR: Output stopping value does not equal new stopping value!" << std::endl;
    passed = false;
  }


  // Exercise other member functions
  std::cout << "SpeedConstant: " << marcher->GetSpeedConstant() << std::endl;
  std::cout << "CollectPoints: " << marcher->GetCollectPoints() << std::endl;

  marcher->SetNormalizationFactor(2.0);
  std::cout << "NormalizationFactor: " << marcher->GetNormalizationFactor();
  std::cout << std::endl;

  std::cout << "SpeedImage: " << marcher->GetInput();
  std::cout << std::endl;

  // Test streaming enumeration for FastMarchingUpwindGradientImageFilterEnums::TargetCondition elements
  const std::set<itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition> allConditions{
    itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition::NoTargets,
    itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition::OneTarget,
    itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition::SomeTargets,
    itk::FastMarchingUpwindGradientImageFilterEnums::TargetCondition::AllTargets
  };
  for (const auto & ee : allConditions)
  {
    std::ostringstream ss;
    ss << ee;
    ITK_TEST_EXPECT_TRUE(ss.str().find("INVALID") == std::string::npos);
  }

  if (passed)
  {
    std::cout << "Fast Marching Upwind Gradient test passed" << std::endl;
    return EXIT_SUCCESS;
  }
  else
  {
    std::cout << "Fast Marching Upwind Gradient test failed" << std::endl;
    return EXIT_FAILURE;
  }
}