File: itkGPUAnisotropicDiffusionImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (97 lines) | stat: -rw-r--r-- 3,158 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGPUAnisotropicDiffusionImageFilter_hxx
#define itkGPUAnisotropicDiffusionImageFilter_hxx

#include "itkGPUAnisotropicDiffusionFunction.h"

namespace itk
{

template <typename TInputImage, typename TOutputImage, typename TParentImageFilter>
void
GPUAnisotropicDiffusionImageFilter<TInputImage, TOutputImage, TParentImageFilter>::InitializeIteration()
{
  auto * f =
    dynamic_cast<GPUAnisotropicDiffusionFunction<UpdateBufferType> *>(this->GetDifferenceFunction().GetPointer());
  if (!f)
  {
    throw ExceptionObject(__FILE__, __LINE__, "GPU anisotropic diffusion function is not set.", ITK_LOCATION);
  }

  f->SetConductanceParameter(this->GetConductanceParameter());
  f->SetTimeStep(this->GetTimeStep());

  // Check the timestep for stability
  double minSpacing;
  if (this->GetUseImageSpacing())
  {
    const auto & spacing = this->GetInput()->GetSpacing();

    minSpacing = spacing[0];
    for (unsigned int i = 1; i < ImageDimension; ++i)
    {
      if (spacing[i] < minSpacing)
      {
        minSpacing = spacing[i];
      }
    }
  }
  else
  {
    minSpacing = 1.0;
  }
  if (this->GetTimeStep() > (minSpacing / std::pow(2.0, static_cast<double>(ImageDimension) + 1)))
  {
    //    f->SetTimeStep(1.0 / std::pow(2.0,
    // static_cast<double>(ImageDimension)));
    itkWarningMacro("Anisotropic diffusion unstable time step: "
                    << this->GetTimeStep() << std::endl
                    << "Stable time step for this image must be smaller than "
                    << minSpacing / std::pow(2.0, static_cast<double>(ImageDimension + 1)));
  }

  if (this->m_GradientMagnitudeIsFixed == false)
  {
    if ((this->GetElapsedIterations() % this->GetConductanceScalingUpdateInterval()) == 0)
    {
      /** GPU version of average squared gradient magnitude calculation */
      f->GPUCalculateAverageGradientMagnitudeSquared(this->GetOutput());
    }
  }
  else
  {
    f->SetAverageGradientMagnitudeSquared(this->GetFixedAverageGradientMagnitude() *
                                          this->GetFixedAverageGradientMagnitude());
  }
  f->InitializeIteration();

  if (this->GetNumberOfIterations() != 0)
  {
    this->UpdateProgress((static_cast<float>(this->GetElapsedIterations())) /
                         (static_cast<float>(this->GetNumberOfIterations())));
  }
  else
  {
    this->UpdateProgress(0);
  }
}

} // end namespace itk

#endif