File: itkGPUGradientNDAnisotropicDiffusionFunction.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (136 lines) | stat: -rw-r--r-- 5,051 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGPUGradientNDAnisotropicDiffusionFunction_h
#define itkGPUGradientNDAnisotropicDiffusionFunction_h

#include "itkGPUScalarAnisotropicDiffusionFunction.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkDerivativeOperator.h"

namespace itk
{
/**
 * \class GPUGradientNDAnisotropicDiffusionFunction
 *
 * This class implements an N-dimensional version of the classic Perona-Malik
 * anisotropic diffusion equation for scalar-valued images on the GPU.  See
 * itkAnisotropicDiffusionFunction for an overview of the anisotropic diffusion
 * framework and equation.
 *
 * \par
 * The conductance term for this implementation is chosen as a function of the
 * gradient magnitude of the image at each point, reducing the strength of
 * diffusion at edge pixels.
 *
 * \f[C(\mathbf{x}) = e^{-(\frac{\parallel \nabla U(\mathbf{x}) \parallel}{K})^2}\f].
 *
 * \par
 * The numerical implementation of this equation is similar to that described
 * in the Perona-Malik paper below, but uses a more robust technique
 * for gradient magnitude estimation and has been generalized to N-dimensions.
 *
 * \par References
 * Pietro Perona and Jalhandra Malik, ``Scale-space and edge detection using
 * anisotropic diffusion,'' IEEE Transactions on Pattern Analysis Machine
 * Intelligence, vol. 12, pp. 629-639, 1990.
 *
 * \ingroup ITKGPUAnisotropicSmoothing
 */

/** Create a helper GPU Kernel class for GPUGradientNDAnisotropicDiffusionFunction */
itkGPUKernelClassMacro(GPUGradientNDAnisotropicDiffusionFunctionKernel);

template <typename TImage>
class ITK_TEMPLATE_EXPORT GPUGradientNDAnisotropicDiffusionFunction
  : public GPUScalarAnisotropicDiffusionFunction<TImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(GPUGradientNDAnisotropicDiffusionFunction);

  /** Standard class type aliases. */
  using Self = GPUGradientNDAnisotropicDiffusionFunction;
  using Superclass = GPUScalarAnisotropicDiffusionFunction<TImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(GPUGradientNDAnisotropicDiffusionFunction);

  /** Inherit some parameters from the superclass type. */
  using typename Superclass::ImageType;
  using typename Superclass::PixelType;
  using typename Superclass::PixelRealType;
  using typename Superclass::TimeStepType;
  using typename Superclass::RadiusType;
  using typename Superclass::NeighborhoodType;
  using typename Superclass::FloatOffsetType;

  using NeighborhoodSizeValueType = SizeValueType;

  /** Inherit some parameters from the superclass type. */
  static constexpr unsigned int ImageDimension = Superclass::ImageDimension;

  /** Get OpenCL Kernel source as a string, creates a GetOpenCLSource method */
  itkGetOpenCLSourceFromKernelMacro(GPUGradientNDAnisotropicDiffusionFunctionKernel);

  /** Compute the equation value. */
  void
  GPUComputeUpdate(const typename TImage::Pointer output, typename TImage::Pointer buffer, void * globalData) override;

  /** This method is called prior to each iteration of the solver. */
  void
  InitializeIteration() override
  {
    m_K = static_cast<PixelType>(this->GetAverageGradientMagnitudeSquared() * this->GetConductanceParameter() *
                                 this->GetConductanceParameter() * -2.0f);
  }

protected:
  GPUGradientNDAnisotropicDiffusionFunction();
  ~GPUGradientNDAnisotropicDiffusionFunction() override = default;

  /** Inner product function. */
  NeighborhoodInnerProduct<ImageType> m_InnerProduct{};

  /** Slices for the ND neighborhood. */
  std::slice x_slice[ImageDimension];
  std::slice xa_slice[ImageDimension][ImageDimension];
  std::slice xd_slice[ImageDimension][ImageDimension];

  /** Derivative operator. */
  DerivativeOperator<PixelType, Self::ImageDimension> m_DerivativeOperator{};

  /** Modified global average gradient magnitude term. */
  PixelType m_K{};

  NeighborhoodSizeValueType m_Center{};
  NeighborhoodSizeValueType m_Stride[ImageDimension]{};

  static double m_MIN_NORM;
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkGPUGradientNDAnisotropicDiffusionFunction.hxx"
#endif

#endif