File: itkGPUDiscreteGaussianImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (301 lines) | stat: -rw-r--r-- 10,691 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkGPUDiscreteGaussianImageFilter_hxx
#define itkGPUDiscreteGaussianImageFilter_hxx

#include "itkGPUNeighborhoodOperatorImageFilter.h"
#include "itkGaussianOperator.h"
#include "itkImageRegionIterator.h"
#include "itkProgressAccumulator.h"
#include "itkStreamingImageFilter.h"

namespace itk
{
template <typename TInputImage, typename TOutputImage>
GPUDiscreteGaussianImageFilter<TInputImage, TOutputImage>::GPUDiscreteGaussianImageFilter()
{
  unsigned int filterDimensionality = this->GetFilterDimensionality();

  if (filterDimensionality > ImageDimension)
  {
    filterDimensionality = ImageDimension;
  }

  if (filterDimensionality == 1)
  {
    m_SingleFilter = SingleFilterType::New();
  }
  else if (filterDimensionality == 2)
  {
    m_FirstFilter = FirstFilterType::New();
    m_LastFilter = LastFilterType::New();
  }
  else if (filterDimensionality > 2)
  {
    m_FirstFilter = FirstFilterType::New();
    m_LastFilter = LastFilterType::New();
    for (unsigned int i = 1; i < filterDimensionality - 1; ++i)
    {
      auto f = IntermediateFilterType::New();
      m_IntermediateFilters.push_back(f);
    }
  }
  else
  {
    itkExceptionMacro("GPUDiscreteGaussianImageFilter only supports n-dimensional image.");
  }
}

template <typename TInputImage, typename TOutputImage>
void
GPUDiscreteGaussianImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method. this should
  // copy the output requested region to the input requested region
  CPUSuperclass::GenerateInputRequestedRegion();
}

template <typename TInputImage, typename TOutputImage>
void
GPUDiscreteGaussianImageFilter<TInputImage, TOutputImage>::GPUGenerateData()
{
  using GPUInputImage = typename itk::GPUTraits<TInputImage>::Type;
  using GPUOutputImage = typename itk::GPUTraits<TOutputImage>::Type;

  typename GPUOutputImage::Pointer output =
    dynamic_cast<GPUOutputImage *>(this->GetOutput()); // this->ProcessObject::GetOutput(0)
                                                       // );

  // typename TOutputImage::Pointer output = this->GetOutput();

  output->SetBufferedRegion(output->GetRequestedRegion());
  output->Allocate();

  // Create an internal image to protect the input image's metadata
  // (e.g. RequestedRegion). The StreamingImageFilter changes the
  // requested region as part of its normal processing.
  // auto localInput = TInputImage::New();
  auto localInput = GPUInputImage::New();
  localInput->Graft(this->GetInput());

  // Determine the dimensionality to filter
  unsigned int filterDimensionality = this->GetFilterDimensionality();
  if (filterDimensionality > ImageDimension)
  {
    filterDimensionality = ImageDimension;
  }

  if (filterDimensionality == 0)
  {
    // no smoothing, copy input to output
    ImageRegionConstIterator<InputImageType> inIt(localInput, this->GetOutput()->GetRequestedRegion());

    ImageRegionIterator<OutputImageType> outIt(output, this->GetOutput()->GetRequestedRegion());

    while (!inIt.IsAtEnd())
    {
      outIt.Set(static_cast<OutputPixelType>(inIt.Get()));
      ++inIt;
      ++outIt;
    }
    return;
  }
  /*
    // Type of the pixel to use for intermediate results
    using RealOutputPixelType = typename NumericTraits< OutputPixelType >::RealType;
    using RealOutputImageType = Image< OutputPixelType, ImageDimension >;

    using RealOutputPixelValueType = typename NumericTraits<RealOutputPixelType>::ValueType;

    // Type definition for the internal neighborhood filter
    //
    // First filter convolves and changes type from input type to real type
    // Middle filters convolves from real to real
    // Last filter convolves and changes type from real type to output type
    // Streaming filter forces the mini-pipeline to run in chunks


    using FirstFilterType = NeighborhoodOperatorImageFilter< InputImageType,
                                             RealOutputImageType, RealOutputPixelValueType >;
    using IntermediateFilterType = NeighborhoodOperatorImageFilter< RealOutputImageType,
                                             RealOutputImageType, RealOutputPixelValueType >;
    using LastFilterType = NeighborhoodOperatorImageFilter< RealOutputImageType,
                                             OutputImageType, RealOutputPixelValueType >;
    using SingleFilterType = NeighborhoodOperatorImageFilter< InputImageType,
                                             OutputImageType, RealOutputPixelValueType >;


    using FirstFilterPointer = typename FirstFilterType::Pointer;
    using IntermediateFilterPointer = typename IntermediateFilterType::Pointer;
    using LastFilterPointer = typename LastFilterType::Pointer;
    using SingleFilterPointer = typename SingleFilterType::Pointer;
  */

  // Create a series of operators
  using OperatorType = GaussianOperator<RealOutputPixelValueType, ImageDimension>;

  std::vector<OperatorType> oper;
  oper.resize(filterDimensionality);

  // Create a process accumulator for tracking the progress of minipipeline
  // auto progress = ProgressAccumulator::New();
  // progress->SetMiniPipelineFilter(this);

  // Set up the operators
  unsigned int i;
  for (i = 0; i < filterDimensionality; ++i)
  {
    // we reverse the direction to minimize computation while, because
    // the largest dimension will be split slice wise for streaming
    unsigned int reverse_i = filterDimensionality - i - 1;

    // Set up the operator for this dimension
    oper[reverse_i].SetDirection(i);
    if (this->GetUseImageSpacing())
    {
      if (localInput->GetSpacing()[i] == 0.0)
      {
        itkExceptionMacro("Pixel spacing cannot be zero");
      }
      else
      {
        // convert the variance from physical units to pixels
        double s = localInput->GetSpacing()[i];
        s = s * s;
        oper[reverse_i].SetVariance((this->GetVariance())[i] / s);
      }
    }
    else
    {
      oper[reverse_i].SetVariance((this->GetVariance())[i]);
    }

    oper[reverse_i].SetMaximumKernelWidth(this->GetMaximumKernelWidth());
    oper[reverse_i].SetMaximumError((this->GetMaximumError())[i]);
    oper[reverse_i].CreateDirectional();
  }

  // Create a chain of filters
  //
  //

  if (filterDimensionality == 1)
  {
    // Use just a single filter
    m_SingleFilter->SetOperator(oper[0]);
    m_SingleFilter->SetInput(localInput);
    // progress->RegisterInternalFilter(m_SingleFilter, 1.0f /
    // this->GetFilterDimensionality());

    // Graft this filters output onto the mini-pipeline so the mini-pipeline
    // has the correct region ivars and will write to this filters bulk data
    // output.
    m_SingleFilter->GraftOutput(output);

    // Update the filter
    m_SingleFilter->Update();

    // Graft the last output of the mini-pipeline onto this filters output so
    // the final output has the correct region ivars and a handle to the final
    // bulk data
    this->GraftOutput(m_SingleFilter->GetOutput()); // output);
  }
  else
  {
    // Setup a full mini-pipeline and stream the data through the
    // pipeline.
    // unsigned int numberOfStages = filterDimensionality *
    // this->GetInternalNumberOfStreamDivisions() + 1;

    // First filter convolves and changes type from input type to real type
    m_FirstFilter->SetOperator(oper[0]);
    m_FirstFilter->ReleaseDataFlagOn();
    m_FirstFilter->SetInput(localInput);
    // progress->RegisterInternalFilter(m_FirstFilter, 1.0f / numberOfStages);

    // Middle filters convolves from real to real
    if (filterDimensionality > 2)
    {
      for (i = 1; i < filterDimensionality - 1; ++i)
      {
        typename IntermediateFilterType::Pointer f = m_IntermediateFilters[i - 1];
        f->SetOperator(oper[i]);
        f->ReleaseDataFlagOn();
        // progress->RegisterInternalFilter(f, 1.0f / numberOfStages);

        if (i == 1)
        {
          f->SetInput(m_FirstFilter->GetOutput());
        }
        else
        {
          // note: first filter in vector (zeroth element) is for i==1
          f->SetInput(m_IntermediateFilters[i - 2]->GetOutput());
        }
      }
    }

    // Last filter convolves and changes type from real type to output type
    m_LastFilter->SetOperator(oper[filterDimensionality - 1]);
    m_LastFilter->ReleaseDataFlagOn();
    if (filterDimensionality > 2)
    {
      m_LastFilter->SetInput(m_IntermediateFilters[filterDimensionality - 3]->GetOutput());
    }
    else
    {
      m_LastFilter->SetInput(m_FirstFilter->GetOutput());
    }
    // progress->RegisterInternalFilter(m_LastFilter, 1.0f / numberOfStages);
    /*
        // Put in a StreamingImageFilter so the mini-pipeline is processed
        // in chunks to minimize memory usage
        StreamingFilterPointer streamingFilter = StreamingFilterType::New();
        streamingFilter->SetInput( m_LastFilter->GetOutput() );
        streamingFilter->SetNumberOfStreamDivisions( this->GetInternalNumberOfStreamDivisions() );
        progress->RegisterInternalFilter(streamingFilter, 1.0f / numberOfStages);

        // Graft this filters output onto the mini-pipeline so the mini-pipeline
        // has the correct region ivars and will write to this filters bulk data
        // output.
        streamingFilter->GraftOutput(output);

        // Update the last filter in the chain
        streamingFilter->Update();
    */
    m_LastFilter->GraftOutput(output);

    m_LastFilter->Update();

    // Graft the last output of the mini-pipeline onto this filters output so
    // the final output has the correct region ivars and a handle to the final
    // bulk data
    this->GraftOutput(m_LastFilter->GetOutput()); // output);
  }
}

template <typename TInputImage, typename TOutputImage>
void
GPUDiscreteGaussianImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  GPUSuperclass::PrintSelf(os, indent);
}

} // end namespace itk

#endif