1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkGPUDiscreteGaussianImageFilter_hxx
#define itkGPUDiscreteGaussianImageFilter_hxx
#include "itkGPUNeighborhoodOperatorImageFilter.h"
#include "itkGaussianOperator.h"
#include "itkImageRegionIterator.h"
#include "itkProgressAccumulator.h"
#include "itkStreamingImageFilter.h"
namespace itk
{
template <typename TInputImage, typename TOutputImage>
GPUDiscreteGaussianImageFilter<TInputImage, TOutputImage>::GPUDiscreteGaussianImageFilter()
{
unsigned int filterDimensionality = this->GetFilterDimensionality();
if (filterDimensionality > ImageDimension)
{
filterDimensionality = ImageDimension;
}
if (filterDimensionality == 1)
{
m_SingleFilter = SingleFilterType::New();
}
else if (filterDimensionality == 2)
{
m_FirstFilter = FirstFilterType::New();
m_LastFilter = LastFilterType::New();
}
else if (filterDimensionality > 2)
{
m_FirstFilter = FirstFilterType::New();
m_LastFilter = LastFilterType::New();
for (unsigned int i = 1; i < filterDimensionality - 1; ++i)
{
auto f = IntermediateFilterType::New();
m_IntermediateFilters.push_back(f);
}
}
else
{
itkExceptionMacro("GPUDiscreteGaussianImageFilter only supports n-dimensional image.");
}
}
template <typename TInputImage, typename TOutputImage>
void
GPUDiscreteGaussianImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method. this should
// copy the output requested region to the input requested region
CPUSuperclass::GenerateInputRequestedRegion();
}
template <typename TInputImage, typename TOutputImage>
void
GPUDiscreteGaussianImageFilter<TInputImage, TOutputImage>::GPUGenerateData()
{
using GPUInputImage = typename itk::GPUTraits<TInputImage>::Type;
using GPUOutputImage = typename itk::GPUTraits<TOutputImage>::Type;
typename GPUOutputImage::Pointer output =
dynamic_cast<GPUOutputImage *>(this->GetOutput()); // this->ProcessObject::GetOutput(0)
// );
// typename TOutputImage::Pointer output = this->GetOutput();
output->SetBufferedRegion(output->GetRequestedRegion());
output->Allocate();
// Create an internal image to protect the input image's metadata
// (e.g. RequestedRegion). The StreamingImageFilter changes the
// requested region as part of its normal processing.
// auto localInput = TInputImage::New();
auto localInput = GPUInputImage::New();
localInput->Graft(this->GetInput());
// Determine the dimensionality to filter
unsigned int filterDimensionality = this->GetFilterDimensionality();
if (filterDimensionality > ImageDimension)
{
filterDimensionality = ImageDimension;
}
if (filterDimensionality == 0)
{
// no smoothing, copy input to output
ImageRegionConstIterator<InputImageType> inIt(localInput, this->GetOutput()->GetRequestedRegion());
ImageRegionIterator<OutputImageType> outIt(output, this->GetOutput()->GetRequestedRegion());
while (!inIt.IsAtEnd())
{
outIt.Set(static_cast<OutputPixelType>(inIt.Get()));
++inIt;
++outIt;
}
return;
}
/*
// Type of the pixel to use for intermediate results
using RealOutputPixelType = typename NumericTraits< OutputPixelType >::RealType;
using RealOutputImageType = Image< OutputPixelType, ImageDimension >;
using RealOutputPixelValueType = typename NumericTraits<RealOutputPixelType>::ValueType;
// Type definition for the internal neighborhood filter
//
// First filter convolves and changes type from input type to real type
// Middle filters convolves from real to real
// Last filter convolves and changes type from real type to output type
// Streaming filter forces the mini-pipeline to run in chunks
using FirstFilterType = NeighborhoodOperatorImageFilter< InputImageType,
RealOutputImageType, RealOutputPixelValueType >;
using IntermediateFilterType = NeighborhoodOperatorImageFilter< RealOutputImageType,
RealOutputImageType, RealOutputPixelValueType >;
using LastFilterType = NeighborhoodOperatorImageFilter< RealOutputImageType,
OutputImageType, RealOutputPixelValueType >;
using SingleFilterType = NeighborhoodOperatorImageFilter< InputImageType,
OutputImageType, RealOutputPixelValueType >;
using FirstFilterPointer = typename FirstFilterType::Pointer;
using IntermediateFilterPointer = typename IntermediateFilterType::Pointer;
using LastFilterPointer = typename LastFilterType::Pointer;
using SingleFilterPointer = typename SingleFilterType::Pointer;
*/
// Create a series of operators
using OperatorType = GaussianOperator<RealOutputPixelValueType, ImageDimension>;
std::vector<OperatorType> oper;
oper.resize(filterDimensionality);
// Create a process accumulator for tracking the progress of minipipeline
// auto progress = ProgressAccumulator::New();
// progress->SetMiniPipelineFilter(this);
// Set up the operators
unsigned int i;
for (i = 0; i < filterDimensionality; ++i)
{
// we reverse the direction to minimize computation while, because
// the largest dimension will be split slice wise for streaming
unsigned int reverse_i = filterDimensionality - i - 1;
// Set up the operator for this dimension
oper[reverse_i].SetDirection(i);
if (this->GetUseImageSpacing())
{
if (localInput->GetSpacing()[i] == 0.0)
{
itkExceptionMacro("Pixel spacing cannot be zero");
}
else
{
// convert the variance from physical units to pixels
double s = localInput->GetSpacing()[i];
s = s * s;
oper[reverse_i].SetVariance((this->GetVariance())[i] / s);
}
}
else
{
oper[reverse_i].SetVariance((this->GetVariance())[i]);
}
oper[reverse_i].SetMaximumKernelWidth(this->GetMaximumKernelWidth());
oper[reverse_i].SetMaximumError((this->GetMaximumError())[i]);
oper[reverse_i].CreateDirectional();
}
// Create a chain of filters
//
//
if (filterDimensionality == 1)
{
// Use just a single filter
m_SingleFilter->SetOperator(oper[0]);
m_SingleFilter->SetInput(localInput);
// progress->RegisterInternalFilter(m_SingleFilter, 1.0f /
// this->GetFilterDimensionality());
// Graft this filters output onto the mini-pipeline so the mini-pipeline
// has the correct region ivars and will write to this filters bulk data
// output.
m_SingleFilter->GraftOutput(output);
// Update the filter
m_SingleFilter->Update();
// Graft the last output of the mini-pipeline onto this filters output so
// the final output has the correct region ivars and a handle to the final
// bulk data
this->GraftOutput(m_SingleFilter->GetOutput()); // output);
}
else
{
// Setup a full mini-pipeline and stream the data through the
// pipeline.
// unsigned int numberOfStages = filterDimensionality *
// this->GetInternalNumberOfStreamDivisions() + 1;
// First filter convolves and changes type from input type to real type
m_FirstFilter->SetOperator(oper[0]);
m_FirstFilter->ReleaseDataFlagOn();
m_FirstFilter->SetInput(localInput);
// progress->RegisterInternalFilter(m_FirstFilter, 1.0f / numberOfStages);
// Middle filters convolves from real to real
if (filterDimensionality > 2)
{
for (i = 1; i < filterDimensionality - 1; ++i)
{
typename IntermediateFilterType::Pointer f = m_IntermediateFilters[i - 1];
f->SetOperator(oper[i]);
f->ReleaseDataFlagOn();
// progress->RegisterInternalFilter(f, 1.0f / numberOfStages);
if (i == 1)
{
f->SetInput(m_FirstFilter->GetOutput());
}
else
{
// note: first filter in vector (zeroth element) is for i==1
f->SetInput(m_IntermediateFilters[i - 2]->GetOutput());
}
}
}
// Last filter convolves and changes type from real type to output type
m_LastFilter->SetOperator(oper[filterDimensionality - 1]);
m_LastFilter->ReleaseDataFlagOn();
if (filterDimensionality > 2)
{
m_LastFilter->SetInput(m_IntermediateFilters[filterDimensionality - 3]->GetOutput());
}
else
{
m_LastFilter->SetInput(m_FirstFilter->GetOutput());
}
// progress->RegisterInternalFilter(m_LastFilter, 1.0f / numberOfStages);
/*
// Put in a StreamingImageFilter so the mini-pipeline is processed
// in chunks to minimize memory usage
StreamingFilterPointer streamingFilter = StreamingFilterType::New();
streamingFilter->SetInput( m_LastFilter->GetOutput() );
streamingFilter->SetNumberOfStreamDivisions( this->GetInternalNumberOfStreamDivisions() );
progress->RegisterInternalFilter(streamingFilter, 1.0f / numberOfStages);
// Graft this filters output onto the mini-pipeline so the mini-pipeline
// has the correct region ivars and will write to this filters bulk data
// output.
streamingFilter->GraftOutput(output);
// Update the last filter in the chain
streamingFilter->Update();
*/
m_LastFilter->GraftOutput(output);
m_LastFilter->Update();
// Graft the last output of the mini-pipeline onto this filters output so
// the final output has the correct region ivars and a handle to the final
// bulk data
this->GraftOutput(m_LastFilter->GetOutput()); // output);
}
}
template <typename TInputImage, typename TOutputImage>
void
GPUDiscreteGaussianImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
GPUSuperclass::PrintSelf(os, indent);
}
} // end namespace itk
#endif
|