File: itkGPUDiscreteGaussianImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (200 lines) | stat: -rw-r--r-- 6,199 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkGPUImage.h"
#include "itkGPUKernelManager.h"
#include "itkGPUContextManager.h"
#include "itkGPUImageToImageFilter.h"
#include "itkGPUNeighborhoodOperatorImageFilter.h"

#include "itkTimeProbe.h"
#include "itkGaussianOperator.h"

#include "itkDiscreteGaussianImageFilter.h"
#include "itkGPUDiscreteGaussianImageFilter.h"

/**
 * Testing GPU Discrete Gaussian Image Filter
 */

template <unsigned int VImageDimension>
int
runGPUDiscreteGaussianImageFilterTest(const std::string & inFile, const std::string & outFile)
{

  using InputPixelType = float;
  using OutputPixelType = float;

  using InputImageType = itk::GPUImage<InputPixelType, VImageDimension>;
  using OutputImageType = itk::GPUImage<OutputPixelType, VImageDimension>;

  using CPUFilterType = itk::DiscreteGaussianImageFilter<InputImageType, OutputImageType>;
  using GPUFilterType = itk::GPUDiscreteGaussianImageFilter<InputImageType, OutputImageType>;

  using ReaderType = itk::ImageFileReader<InputImageType>;
  using WriterType = itk::ImageFileWriter<OutputImageType>;

  auto reader = ReaderType::New();
  auto writer = WriterType::New();

  reader->SetFileName(inFile);
  writer->SetFileName(outFile);

  float variance = 4.0;

  // test 1~8 threads for CPU
  for (int numberOfWorkUnits = 1; numberOfWorkUnits <= 8; ++numberOfWorkUnits)
  {
    auto CPUFilter = CPUFilterType::New();

    itk::TimeProbe cputimer;
    cputimer.Start();

    CPUFilter->SetNumberOfWorkUnits(numberOfWorkUnits);

    CPUFilter->SetInput(reader->GetOutput());
    CPUFilter->SetVariance(variance);
    CPUFilter->Update();

    cputimer.Stop();

    std::cout << "CPU Gaussian Filter took " << cputimer.GetMean() << " seconds with "
              << CPUFilter->GetNumberOfWorkUnits() << " work units.\n"
              << std::endl;

    // -------

    if (numberOfWorkUnits == 8)
    {
      auto GPUFilter = GPUFilterType::New();

      itk::TimeProbe gputimer;
      gputimer.Start();

      GPUFilter->SetInput(reader->GetOutput());
      GPUFilter->SetVariance(variance);
      GPUFilter->Update();

      GPUFilter->GetOutput()->UpdateBuffers(); // synchronization point (GPU->CPU memcpy)

      gputimer.Stop();
      std::cout << "GPU Gaussian Filter took " << gputimer.GetMean() << " seconds.\n" << std::endl;

      // ---------------
      // RMS Error check
      // ---------------

      double                                    diff = 0;
      unsigned int                              nPix = 0;
      itk::ImageRegionIterator<OutputImageType> cit(CPUFilter->GetOutput(),
                                                    CPUFilter->GetOutput()->GetLargestPossibleRegion());
      itk::ImageRegionIterator<OutputImageType> git(GPUFilter->GetOutput(),
                                                    GPUFilter->GetOutput()->GetLargestPossibleRegion());

      for (cit.GoToBegin(), git.GoToBegin(); !cit.IsAtEnd(); ++cit, ++git)
      {
        double err = static_cast<double>(cit.Get()) - static_cast<double>(git.Get());
        //         if(err > 0.1 || static_cast<double>(cit.Get()) < 0.1) std::cout << "CPU : " <<
        //         static_cast<double>(cit.Get()) <<
        //         ", GPU : "
        //         << static_cast<double>(git.Get()) << std::endl;
        diff += err * err;
        nPix++;
      }

      writer->SetInput(GPUFilter->GetOutput());
      writer->Update();

      if (nPix > 0)
      {
        double RMSError = sqrt(diff / static_cast<double>(nPix));
        std::cout << "RMS Error : " << RMSError << std::endl;
        // the CPU filter operator has type double
        // but the double precision is not well-supported on most GPUs
        // and by most drivers at this time.  Therefore, the GPU filter
        // operator has type float
        // relax the RMS threshold here to allow for errors due to
        // differences in precision
        // NOTE:
        //   a threshold of 1.2e-5 worked on linux and Mac, but not Windows
        //   why?
        double RMSThreshold = 1.7e-5;
        if (itk::Math::isnan(RMSError))
        {
          std::cout << "RMS Error is NaN! nPix: " << nPix << std::endl;
          return EXIT_FAILURE;
        }
        if (RMSError > RMSThreshold)
        {
          std::cout << "RMS Error exceeds threshold (" << RMSThreshold << ')' << std::endl;
          return EXIT_FAILURE;
        }
      }
      else
      {
        std::cout << "No pixels in output!" << std::endl;
        return EXIT_FAILURE;
      }
    }
  }

  return EXIT_SUCCESS;
}

int
itkGPUDiscreteGaussianImageFilterTest(int argc, char * argv[])
{
  if (!itk::IsGPUAvailable())
  {
    std::cerr << "OpenCL-enabled GPU is not present." << std::endl;
    return EXIT_FAILURE;
  }

  if (argc < 3)
  {
    std::cerr << "Error: missing arguments" << std::endl;
    std::cerr << "inputfile outputfile [num_dimensions]" << std::endl;
    return EXIT_FAILURE;
  }

  std::string inFile(argv[1]);
  std::string outFile(argv[2]);

  unsigned int dim = 3;
  if (argc >= 4)
  {
    dim = std::stoi(argv[3]);
  }

  if (dim == 2)
  {
    return runGPUDiscreteGaussianImageFilterTest<2>(inFile, outFile);
  }
  else if (dim == 3)
  {
    return runGPUDiscreteGaussianImageFilterTest<3>(inFile, outFile);
  }
  else
  {
    std::cerr << "Error: only 2 or 3 dimensions allowed, " << dim << " selected." << std::endl;
    return EXIT_FAILURE;
  }
}