File: itkCannyEdgeDetectionImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (287 lines) | stat: -rw-r--r-- 10,193 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkCannyEdgeDetectionImageFilter_h
#define itkCannyEdgeDetectionImageFilter_h

#include "itkConstNeighborhoodIterator.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkMultiplyImageFilter.h"
#include "itkMultiThreaderBase.h"
#include "itkDerivativeOperator.h"
#include "itkSparseFieldLayer.h"
#include "itkObjectStore.h"
#include "itkMath.h"

namespace itk
{
template <typename TValue>
class ITK_TEMPLATE_EXPORT ListNode
{
public:
  TValue m_Value;

  ListNode * Next;
  ListNode * Previous;
};

/**
 * \class CannyEdgeDetectionImageFilter
 * \brief This filter is an implementation of a Canny edge detector for
 * scalar-valued images.
 *
 *  Based on John Canny's paper "A Computational Approach
 * to Edge Detection"(IEEE Transactions on Pattern Analysis and Machine
 * Intelligence, Vol. PAMI-8, No.6, November 1986),  there are four major steps
 * used in the edge-detection scheme:
 * (1) Smooth the input image with Gaussian filter.
 * (2) Calculate the second directional derivatives of the smoothed image.
 * (3) Non-Maximum Suppression: the zero-crossings of 2nd derivative are found,
 *     and the sign of third derivative is used to find the correct extrema.
 * (4) The hysteresis thresholding is applied to the gradient magnitude
 *      (multiplied with zero-crossings) of the smoothed image to find and
 *      link edges.
 *
 * \par Inputs and Outputs
 * The input to this filter should be a scalar, real-valued Itk image of
 * arbitrary dimension.  The output should also be a scalar, real-value Itk
 * image of the same dimensionality.
 *
 * \par Parameters
 * There are four parameters for this filter that control the sub-filters used
 * by the algorithm.
 *
 * \par
 * Variance and Maximum error are used in the Gaussian smoothing of the input
 * image.  See  itkDiscreteGaussianImageFilter for information on these
 * parameters.
 *
 * \par
 * Threshold is the lowest allowed value in the output image.  Its data type is
 * the same as the data type of the output image. Any values below the
 * Threshold level will be replaced with the OutsideValue parameter value, whose
 * default is zero.
 *
 * \todo Edge-linking will be added when an itk connected component labeling
 * algorithm is available.
 *
 * \sa DiscreteGaussianImageFilter
 * \sa ZeroCrossingImageFilter
 * \sa ThresholdImageFilter
 * \ingroup ITKImageFeature
 */
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT CannyEdgeDetectionImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(CannyEdgeDetectionImageFilter);

  /** Standard "Self" & Superclass type alias.  */
  using Self = CannyEdgeDetectionImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;

  /** Image type alias support   */
  using InputImageType = TInputImage;
  using OutputImageType = TOutputImage;

  /** SmartPointer type alias support  */
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Define pixel types. */
  using InputImagePixelType = typename TInputImage::PixelType;
  using OutputImagePixelType = typename TOutputImage::PixelType;
  using IndexType = typename TInputImage::IndexType;
  using SizeValueType = typename TInputImage::SizeValueType;

  /** The default boundary condition is used unless overridden
   *in the Evaluate() method. */
  using DefaultBoundaryConditionType = ZeroFluxNeumannBoundaryCondition<OutputImageType>;

  /** The type of data structure that is passed to this function object
   * to evaluate at a pixel that does not lie on a data set boundary.
   */
  using NeighborhoodType = ConstNeighborhoodIterator<OutputImageType, DefaultBoundaryConditionType>;

  using ListNodeType = ListNode<IndexType>;
  using ListNodeStorageType = ObjectStore<ListNodeType>;
  using ListType = SparseFieldLayer<ListNodeType>;
  using ListPointerType = typename ListType::Pointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Typedef to describe the output image region type. */
  using OutputImageRegionType = typename TOutputImage::RegionType;
  using InputImageRegionType = typename TInputImage::RegionType;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(CannyEdgeDetectionImageFilter);

  /** ImageDimension constant. */
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
  static constexpr unsigned int OutputImageDimension = TOutputImage::ImageDimension;

  /** Typedef of double containers. */
  using ArrayType = FixedArray<double, Self::ImageDimension>;

  /** Set/Get the variance of the Gaussian smoothing filter. */
  itkSetMacro(Variance, ArrayType);
  itkGetConstMacro(Variance, const ArrayType);

  /** Set/Get the maximum error of the Gaussian smoothing kernel in each dimensional
   *  direction. */
  itkSetMacro(MaximumError, ArrayType);
  itkGetConstMacro(MaximumError, const ArrayType);

  /** Set/Get the variance of the Gaussian smoothing filter. */
  void
  SetVariance(const typename ArrayType::ValueType v)
  {
    for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
    {
      if (Math::NotExactlyEquals(m_Variance[i], v))
      {
        m_Variance.Fill(v);
        this->Modified();
        break;
      }
    }
  }

  /** Set/Get the MaximumError parameter used by the Gaussian smoothing filter
   *  in this algorithm */
  void
  SetMaximumError(const typename ArrayType::ValueType v)
  {
    for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
    {
      if (Math::NotExactlyEquals(m_MaximumError[i], v))
      {
        m_MaximumError.Fill(v);
        this->Modified();
        break;
      }
    }
  }

  /** \brief Set the upper threshold value for detected edges.
   */
  itkSetMacro(UpperThreshold, OutputImagePixelType);
  itkGetConstMacro(UpperThreshold, OutputImagePixelType);

  /** \brief Set the lower threshold value for detected edges.
   */
  itkSetMacro(LowerThreshold, OutputImagePixelType);
  itkGetConstMacro(LowerThreshold, OutputImagePixelType);

  OutputImageType *
  GetNonMaximumSuppressionImage()
  {
    return this->m_MultiplyImageFilter->GetOutput();
  }

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<InputImagePixelType>));
  itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<OutputImagePixelType>));
  itkConceptMacro(SameDimensionCheck, (Concept::SameDimension<ImageDimension, OutputImageDimension>));
  itkConceptMacro(InputIsFloatingPointCheck, (Concept::IsFloatingPoint<InputImagePixelType>));
  itkConceptMacro(OutputIsFloatingPointCheck, (Concept::IsFloatingPoint<OutputImagePixelType>));
  // End concept checking
#endif

protected:
  CannyEdgeDetectionImageFilter();
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  void
  GenerateData() override;

  using GaussianImageFilterType = DiscreteGaussianImageFilter<InputImageType, OutputImageType>;
  using MultiplyImageFilterType = MultiplyImageFilter<OutputImageType, OutputImageType, OutputImageType>;

private:
  ~CannyEdgeDetectionImageFilter() override = default;

  /** Allocate storage for update buffers used during calculation of multiple steps. */
  void
  AllocateUpdateBuffer();

  /** Implement hysteresis thresholding. */
  void
  HysteresisThresholding();

  /** Edge linking function. */
  void
  FollowEdge(IndexType index, const OutputImageType * multiplyImageFilterOutput);

  /** Calculate the second derivative of the smoothed image, it writes the
   *  result to the update buffer */
  void
  ThreadedCompute2ndDerivative(const OutputImageRegionType & outputRegionForThread);


  /** This method is used to calculate the 2nd derivative for
   * non-boundary pixels. It is called by the ThreadedCompute2ndDerivative
   * method. */
  OutputImagePixelType
  ComputeCannyEdge(const NeighborhoodType & it, void * globalData);

  /** Calculate the gradient of the second derivative of the smoothed image,
   *  it writes the result to m_UpdateBuffer1 */
  void
  ThreadedCompute2ndDerivativePos(const OutputImageRegionType & outputRegionForThread);

  ArrayType m_Variance{};
  ArrayType m_MaximumError{};

  OutputImagePixelType m_UpperThreshold{}; // should be float here?
  OutputImagePixelType m_LowerThreshold{}; // should be float here?

  typename OutputImageType::Pointer m_UpdateBuffer1{};

  /** Gaussian filter to smooth the input image. */
  typename GaussianImageFilterType::Pointer m_GaussianFilter{};

  /** Multiply image filter to multiply with the zero crossings of the second
   *  derivative. */
  typename MultiplyImageFilterType::Pointer m_MultiplyImageFilter{};

  /** Function objects that are used in the inner loops of derivative
   *  calculations. */
  DerivativeOperator<OutputImagePixelType, Self::ImageDimension> m_ComputeCannyEdge1stDerivativeOper{};
  DerivativeOperator<OutputImagePixelType, Self::ImageDimension> m_ComputeCannyEdge2ndDerivativeOper{};

  std::slice m_ComputeCannyEdgeSlice[ImageDimension]{};

  SizeValueType m_Stride[ImageDimension]{};
  SizeValueType m_Center{};

  typename ListNodeStorageType::Pointer m_NodeStore{};
  ListPointerType                       m_NodeList{};

  OutputImageType * m_OutputImage{};
};
} // end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkCannyEdgeDetectionImageFilter.hxx"
#endif

#endif