1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkCannyEdgeDetectionImageFilter_hxx
#define itkCannyEdgeDetectionImageFilter_hxx
#include "itkZeroCrossingImageFilter.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkNumericTraits.h"
#include "itkProgressReporter.h"
#include "itkGradientMagnitudeImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkMath.h"
#include "itkProgressTransformer.h"
namespace itk
{
template <typename TInputImage, typename TOutputImage>
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::CannyEdgeDetectionImageFilter()
: m_UpperThreshold(OutputImagePixelType{})
, m_LowerThreshold(OutputImagePixelType{})
{
m_Variance.Fill(0.0);
m_MaximumError.Fill(0.01);
m_GaussianFilter = GaussianImageFilterType::New();
m_MultiplyImageFilter = MultiplyImageFilterType::New();
m_UpdateBuffer1 = OutputImageType::New();
// Set up neighborhood slices for all the dimensions.
typename Neighborhood<OutputImagePixelType, ImageDimension>::RadiusType r;
r.Fill(1);
// Dummy neighborhood used to set up the slices
Neighborhood<OutputImagePixelType, ImageDimension> it;
it.SetRadius(r);
// Slice the neighborhood
m_Center = it.Size() / 2;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
m_Stride[i] = it.GetStride(i);
}
for (unsigned int i = 0; i < ImageDimension; ++i)
{
m_ComputeCannyEdgeSlice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]);
}
// Allocate the derivative operator
m_ComputeCannyEdge1stDerivativeOper.SetDirection(0);
m_ComputeCannyEdge1stDerivativeOper.SetOrder(1);
m_ComputeCannyEdge1stDerivativeOper.CreateDirectional();
m_ComputeCannyEdge2ndDerivativeOper.SetDirection(0);
m_ComputeCannyEdge2ndDerivativeOper.SetOrder(2);
m_ComputeCannyEdge2ndDerivativeOper.CreateDirectional();
// Initialize the list
m_NodeStore = ListNodeStorageType::New();
m_NodeList = ListType::New();
m_OutputImage = nullptr;
}
template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::AllocateUpdateBuffer()
{
// The update buffer looks just like the input
typename TInputImage::ConstPointer input = this->GetInput();
m_UpdateBuffer1->CopyInformation(input);
m_UpdateBuffer1->SetRequestedRegion(input->GetRequestedRegion());
m_UpdateBuffer1->SetBufferedRegion(input->GetBufferedRegion());
m_UpdateBuffer1->Allocate();
}
template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::ThreadedCompute2ndDerivative(
const OutputImageRegionType & outputRegionForThread)
{
ZeroFluxNeumannBoundaryCondition<TInputImage> nbc;
ImageRegionIterator<TOutputImage> it;
void * globalData = nullptr;
// Here input is the result from the gaussian filter output is the update
// buffer
typename OutputImageType::Pointer input = m_GaussianFilter->GetOutput();
// Set iterator radius
Size<ImageDimension> radius;
radius.Fill(1);
// Find the data-set boundary "faces"
NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage> bC;
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>::FaceListType faceList =
bC(input, outputRegionForThread, radius);
// Process the non-boundary region and then each of the boundary faces.
// These are N-d regions which border the edge of the buffer.
for (const auto & face : faceList)
{
NeighborhoodType bit(radius, input, face);
it = ImageRegionIterator<OutputImageType>(this->m_OutputImage, face);
bit.OverrideBoundaryCondition(&nbc);
bit.GoToBegin();
while (!bit.IsAtEnd())
{
it.Value() = ComputeCannyEdge(bit, globalData);
++bit;
++it;
}
}
}
template <typename TInputImage, typename TOutputImage>
auto
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::ComputeCannyEdge(const NeighborhoodType & it,
void * itkNotUsed(globalData))
-> OutputImagePixelType
{
NeighborhoodInnerProduct<OutputImageType> innerProduct;
OutputImagePixelType dx[ImageDimension];
OutputImagePixelType dxx[ImageDimension];
OutputImagePixelType dxy[ImageDimension * (ImageDimension - 1) / 2];
// double alpha = 0.01;
// Calculate 1st & 2nd order derivative
for (unsigned int i = 0; i < ImageDimension; ++i)
{
dx[i] = innerProduct(m_ComputeCannyEdgeSlice[i], it, m_ComputeCannyEdge1stDerivativeOper);
dxx[i] = innerProduct(m_ComputeCannyEdgeSlice[i], it, m_ComputeCannyEdge2ndDerivativeOper);
}
OutputImagePixelType deriv{};
int k = 0;
// Calculate the 2nd derivative
for (unsigned int i = 0; i < ImageDimension - 1; ++i)
{
for (unsigned int j = i + 1; j < ImageDimension; ++j)
{
dxy[k] = 0.25 * it.GetPixel(m_Center - m_Stride[i] - m_Stride[j]) -
0.25 * it.GetPixel(m_Center - m_Stride[i] + m_Stride[j]) -
0.25 * it.GetPixel(m_Center + m_Stride[i] - m_Stride[j]) +
0.25 * it.GetPixel(m_Center + m_Stride[i] + m_Stride[j]);
deriv += 2.0 * dx[i] * dx[j] * dxy[k];
++k;
}
}
auto gradMag = static_cast<OutputImagePixelType>(0.0001); // alpha * alpha;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
deriv += dx[i] * dx[i] * dxx[i];
gradMag += dx[i] * dx[i];
}
deriv = deriv / gradMag;
return deriv;
}
template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::GenerateData()
{
this->UpdateProgress(0.0f);
// Use grafting of the input and output of this filter to isolate
// the mini-pipeline and other modifications from the pipeline.
auto input = InputImageType::New();
input->Graft(const_cast<InputImageType *>(this->GetInput()));
// Allocate the output, and graft
Superclass::AllocateOutputs();
auto output = OutputImageType::New();
output->Graft(this->GetOutput());
this->m_OutputImage = output;
typename ZeroCrossingImageFilter<TOutputImage, TOutputImage>::Pointer zeroCrossFilter =
ZeroCrossingImageFilter<TOutputImage, TOutputImage>::New();
this->AllocateUpdateBuffer();
// 1.Apply the Gaussian Filter to the input image
m_GaussianFilter->SetVariance(m_Variance);
m_GaussianFilter->SetMaximumError(m_MaximumError);
m_GaussianFilter->SetInput(input);
// Modify to force execution, due to grafting complications
m_GaussianFilter->Modified();
m_GaussianFilter->Update();
this->UpdateProgress(0.01f);
ProgressTransformer progress1(0.01f, 0.45f, this);
// 2. Calculate 2nd order directional derivative
// Calculate the 2nd order directional derivative of the smoothed image.
// The output of this filter will be used to store the directional
// derivative.
this->GetMultiThreader()->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
this->GetMultiThreader()->template ParallelizeImageRegion<TOutputImage::ImageDimension>(
this->GetOutput()->GetRequestedRegion(),
[this](const OutputImageRegionType & outputRegionForThread) {
this->ThreadedCompute2ndDerivative(outputRegionForThread);
},
progress1.GetProcessObject());
ProgressTransformer progress2(0.45f, 0.9f, this);
this->GetMultiThreader()->template ParallelizeImageRegion<TOutputImage::ImageDimension>(
this->GetOutput()->GetRequestedRegion(),
[this](const OutputImageRegionType & outputRegionForThread) {
this->ThreadedCompute2ndDerivativePos(outputRegionForThread);
},
progress2.GetProcessObject());
// 3. Non-maximum suppression
// Calculate the zero crossings of the 2nd directional derivative and write
// the result to output buffer.
zeroCrossFilter->SetInput(this->m_OutputImage);
zeroCrossFilter->Update();
this->UpdateProgress(0.92f);
// 4. Hysteresis Thresholding
// First get all the edges corresponding to zerocrossings
m_MultiplyImageFilter->SetInput1(m_UpdateBuffer1);
m_MultiplyImageFilter->SetInput2(zeroCrossFilter->GetOutput());
// To save memory, we will graft the output of the m_GaussianFilter,
// which is no longer needed, into the m_MultiplyImageFilter.
m_MultiplyImageFilter->GraftOutput(m_GaussianFilter->GetOutput());
m_MultiplyImageFilter->Update();
this->UpdateProgress(0.95f);
// Then do the double thresholding upon the edge responses
this->HysteresisThresholding();
this->UpdateProgress(0.99f);
this->GraftOutput(output);
this->m_OutputImage = nullptr;
this->UpdateProgress(1.0f);
}
template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::HysteresisThresholding()
{
// This is the Zero crossings of the Second derivative multiplied with the
// gradients of the image. HysteresisThresholding of this image should give
// the Canny output.
typename OutputImageType::Pointer input = m_MultiplyImageFilter->GetOutput();
float value;
ListNodeType * node;
// fix me
ImageRegionIterator<TOutputImage> oit(input, input->GetRequestedRegion());
ImageRegionIterator<TOutputImage> uit(this->m_OutputImage, this->m_OutputImage->GetRequestedRegion());
while (!uit.IsAtEnd())
{
uit.Value() = OutputImagePixelType{};
++uit;
}
const OutputImageType * multiplyImageFilterOutput = this->m_MultiplyImageFilter->GetOutput();
while (!oit.IsAtEnd())
{
value = oit.Value();
if (value > m_UpperThreshold)
{
node = m_NodeStore->Borrow();
node->m_Value = oit.GetIndex();
m_NodeList->PushFront(node);
FollowEdge(oit.GetIndex(), multiplyImageFilterOutput);
}
++oit;
}
}
template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::FollowEdge(IndexType index,
const OutputImageType * multiplyImageFilterOutput)
{
// This is the Zero crossings of the Second derivative multiplied with the
// gradients of the image. HysteresisThresholding of this image should give
// the Canny output.
InputImageRegionType inputRegion = multiplyImageFilterOutput->GetRequestedRegion();
IndexType nIndex;
IndexType cIndex;
ListNodeType * node;
// Assign iterator radius
Size<ImageDimension> radius;
radius.Fill(1);
ConstNeighborhoodIterator<TOutputImage> oit(
radius, multiplyImageFilterOutput, multiplyImageFilterOutput->GetRequestedRegion());
ImageRegionIteratorWithIndex<TOutputImage> uit(this->m_OutputImage, this->m_OutputImage->GetRequestedRegion());
uit.SetIndex(index);
if (Math::ExactlyEquals(uit.Get(), NumericTraits<OutputImagePixelType>::OneValue()))
{
// Remove the node if we are not going to follow it!
//
// Pop the front node from the list and read its index value.
node = m_NodeList->Front(); // get a pointer to the first node
m_NodeList->PopFront(); // unlink the front node
m_NodeStore->Return(node); // return the memory for reuse
return;
}
int nSize = m_Center * 2 + 1;
while (!m_NodeList->Empty())
{
// Pop the front node from the list and read its index value.
node = m_NodeList->Front(); // Get a pointer to the first node
cIndex = node->m_Value; // Read the value of the first node
m_NodeList->PopFront(); // Unlink the front node
m_NodeStore->Return(node); // Return the memory for reuse
// Move iterators to the correct index position.
oit.SetLocation(cIndex);
uit.SetIndex(cIndex);
uit.Value() = 1;
// Search the neighbors for new indices to add to the list.
for (int i = 0; i < nSize; ++i)
{
nIndex = oit.GetIndex(i);
uit.SetIndex(nIndex);
if (inputRegion.IsInside(nIndex))
{
if (oit.GetPixel(i) > m_LowerThreshold &&
Math::NotExactlyEquals(uit.Value(), NumericTraits<OutputImagePixelType>::OneValue()))
{
node = m_NodeStore->Borrow(); // Get a new node struct
node->m_Value = nIndex; // Set its value
m_NodeList->PushFront(node); // Add the new node to the list
uit.SetIndex(nIndex);
uit.Value() = NumericTraits<OutputImagePixelType>::OneValue();
}
}
}
}
}
template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::ThreadedCompute2ndDerivativePos(
const OutputImageRegionType & outputRegionForThread)
{
ZeroFluxNeumannBoundaryCondition<TInputImage> nbc;
ConstNeighborhoodIterator<TInputImage> bit;
ConstNeighborhoodIterator<TInputImage> bit1;
ImageRegionIterator<TOutputImage> it;
// Here input is the result from the gaussian filter
// input1 is the 2nd derivative result
// output is the gradient of 2nd derivative
typename OutputImageType::Pointer input1 = this->m_OutputImage;
typename OutputImageType::Pointer input = m_GaussianFilter->GetOutput();
typename InputImageType::Pointer output = m_UpdateBuffer1;
// Set iterator radius
Size<ImageDimension> radius;
radius.Fill(1);
// Find the data-set boundary "faces"
NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage> bC;
typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>::FaceListType faceList =
bC(input, outputRegionForThread, radius);
InputImagePixelType zero{};
OutputImagePixelType dx[ImageDimension];
OutputImagePixelType dx1[ImageDimension];
OutputImagePixelType directional[ImageDimension];
OutputImagePixelType derivPos;
OutputImagePixelType gradMag;
// Process the non-boundary region and then each of the boundary faces.
// These are N-d regions which border the edge of the buffer.
NeighborhoodInnerProduct<OutputImageType> IP;
for (const auto & face : faceList)
{
bit = ConstNeighborhoodIterator<InputImageType>(radius, input, face);
bit1 = ConstNeighborhoodIterator<InputImageType>(radius, input1, face);
it = ImageRegionIterator<OutputImageType>(output, face);
bit.OverrideBoundaryCondition(&nbc);
bit.GoToBegin();
bit1.GoToBegin();
it.GoToBegin();
while (!bit.IsAtEnd())
{
gradMag = 0.0001;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
dx[i] = IP(m_ComputeCannyEdgeSlice[i], bit, m_ComputeCannyEdge1stDerivativeOper);
gradMag += dx[i] * dx[i];
dx1[i] = IP(m_ComputeCannyEdgeSlice[i], bit1, m_ComputeCannyEdge1stDerivativeOper);
}
gradMag = std::sqrt(static_cast<double>(gradMag));
derivPos = zero;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
// First calculate the directional derivative
directional[i] = dx[i] / gradMag;
// Calculate gradient of 2nd derivative
derivPos += dx1[i] * directional[i];
}
it.Value() = ((derivPos <= zero));
it.Value() = it.Get() * gradMag;
++bit;
++bit1;
++it;
}
}
}
template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Variance: " << m_Variance << std::endl;
os << indent << "MaximumError: " << m_MaximumError << std::endl;
os << indent
<< "UpperThreshold: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_UpperThreshold)
<< std::endl;
os << indent
<< "LowerThreshold: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_LowerThreshold)
<< std::endl;
os << indent << "Center: " << m_Center << std::endl;
os << indent << "Stride: " << m_Stride << std::endl;
itkPrintSelfObjectMacro(GaussianFilter);
itkPrintSelfObjectMacro(MultiplyImageFilter);
itkPrintSelfObjectMacro(UpdateBuffer1);
}
} // namespace itk
#endif
|