File: itkCannyEdgeDetectionImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (487 lines) | stat: -rw-r--r-- 16,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkCannyEdgeDetectionImageFilter_hxx
#define itkCannyEdgeDetectionImageFilter_hxx

#include "itkZeroCrossingImageFilter.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkNumericTraits.h"
#include "itkProgressReporter.h"
#include "itkGradientMagnitudeImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkMath.h"
#include "itkProgressTransformer.h"

namespace itk
{
template <typename TInputImage, typename TOutputImage>
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::CannyEdgeDetectionImageFilter()
  : m_UpperThreshold(OutputImagePixelType{})
  , m_LowerThreshold(OutputImagePixelType{})
{
  m_Variance.Fill(0.0);
  m_MaximumError.Fill(0.01);

  m_GaussianFilter = GaussianImageFilterType::New();
  m_MultiplyImageFilter = MultiplyImageFilterType::New();
  m_UpdateBuffer1 = OutputImageType::New();

  // Set up neighborhood slices for all the dimensions.
  typename Neighborhood<OutputImagePixelType, ImageDimension>::RadiusType r;
  r.Fill(1);

  // Dummy neighborhood used to set up the slices
  Neighborhood<OutputImagePixelType, ImageDimension> it;
  it.SetRadius(r);

  // Slice the neighborhood
  m_Center = it.Size() / 2;

  for (unsigned int i = 0; i < ImageDimension; ++i)
  {
    m_Stride[i] = it.GetStride(i);
  }

  for (unsigned int i = 0; i < ImageDimension; ++i)
  {
    m_ComputeCannyEdgeSlice[i] = std::slice(m_Center - m_Stride[i], 3, m_Stride[i]);
  }

  // Allocate the derivative operator
  m_ComputeCannyEdge1stDerivativeOper.SetDirection(0);
  m_ComputeCannyEdge1stDerivativeOper.SetOrder(1);
  m_ComputeCannyEdge1stDerivativeOper.CreateDirectional();

  m_ComputeCannyEdge2ndDerivativeOper.SetDirection(0);
  m_ComputeCannyEdge2ndDerivativeOper.SetOrder(2);
  m_ComputeCannyEdge2ndDerivativeOper.CreateDirectional();

  // Initialize the list
  m_NodeStore = ListNodeStorageType::New();
  m_NodeList = ListType::New();

  m_OutputImage = nullptr;
}

template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::AllocateUpdateBuffer()
{
  // The update buffer looks just like the input
  typename TInputImage::ConstPointer input = this->GetInput();

  m_UpdateBuffer1->CopyInformation(input);
  m_UpdateBuffer1->SetRequestedRegion(input->GetRequestedRegion());
  m_UpdateBuffer1->SetBufferedRegion(input->GetBufferedRegion());
  m_UpdateBuffer1->Allocate();
}

template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::ThreadedCompute2ndDerivative(
  const OutputImageRegionType & outputRegionForThread)
{
  ZeroFluxNeumannBoundaryCondition<TInputImage> nbc;

  ImageRegionIterator<TOutputImage> it;

  void * globalData = nullptr;

  // Here input is the result from the gaussian filter output is the update
  // buffer
  typename OutputImageType::Pointer input = m_GaussianFilter->GetOutput();

  // Set iterator radius
  Size<ImageDimension> radius;
  radius.Fill(1);

  // Find the data-set boundary "faces"
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>                        bC;
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>::FaceListType faceList =
    bC(input, outputRegionForThread, radius);

  // Process the non-boundary region and then each of the boundary faces.
  // These are N-d regions which border the edge of the buffer.
  for (const auto & face : faceList)
  {
    NeighborhoodType bit(radius, input, face);

    it = ImageRegionIterator<OutputImageType>(this->m_OutputImage, face);
    bit.OverrideBoundaryCondition(&nbc);
    bit.GoToBegin();

    while (!bit.IsAtEnd())
    {
      it.Value() = ComputeCannyEdge(bit, globalData);
      ++bit;
      ++it;
    }
  }
}

template <typename TInputImage, typename TOutputImage>
auto
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::ComputeCannyEdge(const NeighborhoodType & it,
                                                                           void * itkNotUsed(globalData))
  -> OutputImagePixelType
{

  NeighborhoodInnerProduct<OutputImageType> innerProduct;

  OutputImagePixelType dx[ImageDimension];
  OutputImagePixelType dxx[ImageDimension];
  OutputImagePixelType dxy[ImageDimension * (ImageDimension - 1) / 2];

  //  double alpha = 0.01;

  // Calculate 1st & 2nd order derivative
  for (unsigned int i = 0; i < ImageDimension; ++i)
  {
    dx[i] = innerProduct(m_ComputeCannyEdgeSlice[i], it, m_ComputeCannyEdge1stDerivativeOper);
    dxx[i] = innerProduct(m_ComputeCannyEdgeSlice[i], it, m_ComputeCannyEdge2ndDerivativeOper);
  }

  OutputImagePixelType deriv{};

  int k = 0;
  // Calculate the 2nd derivative
  for (unsigned int i = 0; i < ImageDimension - 1; ++i)
  {
    for (unsigned int j = i + 1; j < ImageDimension; ++j)
    {
      dxy[k] = 0.25 * it.GetPixel(m_Center - m_Stride[i] - m_Stride[j]) -
               0.25 * it.GetPixel(m_Center - m_Stride[i] + m_Stride[j]) -
               0.25 * it.GetPixel(m_Center + m_Stride[i] - m_Stride[j]) +
               0.25 * it.GetPixel(m_Center + m_Stride[i] + m_Stride[j]);

      deriv += 2.0 * dx[i] * dx[j] * dxy[k];
      ++k;
    }
  }

  auto gradMag = static_cast<OutputImagePixelType>(0.0001); // alpha * alpha;
  for (unsigned int i = 0; i < ImageDimension; ++i)
  {
    deriv += dx[i] * dx[i] * dxx[i];
    gradMag += dx[i] * dx[i];
  }

  deriv = deriv / gradMag;

  return deriv;
}


template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  this->UpdateProgress(0.0f);

  // Use grafting of the input and output of this filter to isolate
  // the mini-pipeline and other modifications from the pipeline.
  auto input = InputImageType::New();
  input->Graft(const_cast<InputImageType *>(this->GetInput()));

  // Allocate the output, and graft
  Superclass::AllocateOutputs();
  auto output = OutputImageType::New();
  output->Graft(this->GetOutput());
  this->m_OutputImage = output;

  typename ZeroCrossingImageFilter<TOutputImage, TOutputImage>::Pointer zeroCrossFilter =
    ZeroCrossingImageFilter<TOutputImage, TOutputImage>::New();

  this->AllocateUpdateBuffer();

  // 1.Apply the Gaussian Filter to the input image
  m_GaussianFilter->SetVariance(m_Variance);
  m_GaussianFilter->SetMaximumError(m_MaximumError);
  m_GaussianFilter->SetInput(input);
  // Modify to force execution, due to grafting complications
  m_GaussianFilter->Modified();
  m_GaussianFilter->Update();
  this->UpdateProgress(0.01f);

  ProgressTransformer progress1(0.01f, 0.45f, this);
  // 2. Calculate 2nd order directional derivative
  // Calculate the 2nd order directional derivative of the smoothed image.
  // The output of this filter will be used to store the directional
  // derivative.
  this->GetMultiThreader()->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
  this->GetMultiThreader()->template ParallelizeImageRegion<TOutputImage::ImageDimension>(
    this->GetOutput()->GetRequestedRegion(),
    [this](const OutputImageRegionType & outputRegionForThread) {
      this->ThreadedCompute2ndDerivative(outputRegionForThread);
    },
    progress1.GetProcessObject());

  ProgressTransformer progress2(0.45f, 0.9f, this);
  this->GetMultiThreader()->template ParallelizeImageRegion<TOutputImage::ImageDimension>(
    this->GetOutput()->GetRequestedRegion(),
    [this](const OutputImageRegionType & outputRegionForThread) {
      this->ThreadedCompute2ndDerivativePos(outputRegionForThread);
    },
    progress2.GetProcessObject());

  // 3. Non-maximum suppression

  // Calculate the zero crossings of the 2nd directional derivative and write
  // the result to output buffer.
  zeroCrossFilter->SetInput(this->m_OutputImage);
  zeroCrossFilter->Update();
  this->UpdateProgress(0.92f);

  // 4. Hysteresis Thresholding

  // First get all the edges corresponding to zerocrossings
  m_MultiplyImageFilter->SetInput1(m_UpdateBuffer1);
  m_MultiplyImageFilter->SetInput2(zeroCrossFilter->GetOutput());

  // To save memory, we will graft the output of the m_GaussianFilter,
  // which is no longer needed, into the m_MultiplyImageFilter.
  m_MultiplyImageFilter->GraftOutput(m_GaussianFilter->GetOutput());
  m_MultiplyImageFilter->Update();
  this->UpdateProgress(0.95f);

  // Then do the double thresholding upon the edge responses
  this->HysteresisThresholding();
  this->UpdateProgress(0.99f);

  this->GraftOutput(output);
  this->m_OutputImage = nullptr;
  this->UpdateProgress(1.0f);
}

template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::HysteresisThresholding()
{
  // This is the Zero crossings of the Second derivative multiplied with the
  // gradients of the image. HysteresisThresholding of this image should give
  // the Canny output.
  typename OutputImageType::Pointer input = m_MultiplyImageFilter->GetOutput();
  float                             value;

  ListNodeType * node;

  // fix me
  ImageRegionIterator<TOutputImage> oit(input, input->GetRequestedRegion());

  ImageRegionIterator<TOutputImage> uit(this->m_OutputImage, this->m_OutputImage->GetRequestedRegion());
  while (!uit.IsAtEnd())
  {
    uit.Value() = OutputImagePixelType{};
    ++uit;
  }

  const OutputImageType * multiplyImageFilterOutput = this->m_MultiplyImageFilter->GetOutput();
  while (!oit.IsAtEnd())
  {
    value = oit.Value();

    if (value > m_UpperThreshold)
    {
      node = m_NodeStore->Borrow();
      node->m_Value = oit.GetIndex();
      m_NodeList->PushFront(node);
      FollowEdge(oit.GetIndex(), multiplyImageFilterOutput);
    }

    ++oit;
  }
}

template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::FollowEdge(IndexType               index,
                                                                     const OutputImageType * multiplyImageFilterOutput)
{
  // This is the Zero crossings of the Second derivative multiplied with the
  // gradients of the image. HysteresisThresholding of this image should give
  // the Canny output.
  InputImageRegionType inputRegion = multiplyImageFilterOutput->GetRequestedRegion();

  IndexType      nIndex;
  IndexType      cIndex;
  ListNodeType * node;

  // Assign iterator radius
  Size<ImageDimension> radius;
  radius.Fill(1);

  ConstNeighborhoodIterator<TOutputImage> oit(
    radius, multiplyImageFilterOutput, multiplyImageFilterOutput->GetRequestedRegion());
  ImageRegionIteratorWithIndex<TOutputImage> uit(this->m_OutputImage, this->m_OutputImage->GetRequestedRegion());

  uit.SetIndex(index);
  if (Math::ExactlyEquals(uit.Get(), NumericTraits<OutputImagePixelType>::OneValue()))
  {
    // Remove the node if we are not going to follow it!
    //
    // Pop the front node from the list and read its index value.
    node = m_NodeList->Front(); // get a pointer to the first node
    m_NodeList->PopFront();     // unlink the front node
    m_NodeStore->Return(node);  // return the memory for reuse
    return;
  }

  int nSize = m_Center * 2 + 1;
  while (!m_NodeList->Empty())
  {
    // Pop the front node from the list and read its index value.
    node = m_NodeList->Front(); // Get a pointer to the first node
    cIndex = node->m_Value;     // Read the value of the first node
    m_NodeList->PopFront();     // Unlink the front node
    m_NodeStore->Return(node);  // Return the memory for reuse

    // Move iterators to the correct index position.
    oit.SetLocation(cIndex);
    uit.SetIndex(cIndex);
    uit.Value() = 1;

    // Search the neighbors for new indices to add to the list.
    for (int i = 0; i < nSize; ++i)
    {
      nIndex = oit.GetIndex(i);
      uit.SetIndex(nIndex);
      if (inputRegion.IsInside(nIndex))
      {
        if (oit.GetPixel(i) > m_LowerThreshold &&
            Math::NotExactlyEquals(uit.Value(), NumericTraits<OutputImagePixelType>::OneValue()))
        {
          node = m_NodeStore->Borrow(); // Get a new node struct
          node->m_Value = nIndex;       // Set its value
          m_NodeList->PushFront(node);  // Add the new node to the list

          uit.SetIndex(nIndex);
          uit.Value() = NumericTraits<OutputImagePixelType>::OneValue();
        }
      }
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::ThreadedCompute2ndDerivativePos(
  const OutputImageRegionType & outputRegionForThread)
{
  ZeroFluxNeumannBoundaryCondition<TInputImage> nbc;

  ConstNeighborhoodIterator<TInputImage> bit;
  ConstNeighborhoodIterator<TInputImage> bit1;

  ImageRegionIterator<TOutputImage> it;

  // Here input is the result from the gaussian filter
  //      input1 is the 2nd derivative result
  //      output is the gradient of 2nd derivative
  typename OutputImageType::Pointer input1 = this->m_OutputImage;
  typename OutputImageType::Pointer input = m_GaussianFilter->GetOutput();

  typename InputImageType::Pointer output = m_UpdateBuffer1;

  // Set iterator radius
  Size<ImageDimension> radius;
  radius.Fill(1);

  // Find the data-set boundary "faces"
  NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>                        bC;
  typename NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<TInputImage>::FaceListType faceList =
    bC(input, outputRegionForThread, radius);

  InputImagePixelType zero{};

  OutputImagePixelType dx[ImageDimension];
  OutputImagePixelType dx1[ImageDimension];

  OutputImagePixelType directional[ImageDimension];
  OutputImagePixelType derivPos;

  OutputImagePixelType gradMag;

  // Process the non-boundary region and then each of the boundary faces.
  // These are N-d regions which border the edge of the buffer.

  NeighborhoodInnerProduct<OutputImageType> IP;

  for (const auto & face : faceList)
  {
    bit = ConstNeighborhoodIterator<InputImageType>(radius, input, face);
    bit1 = ConstNeighborhoodIterator<InputImageType>(radius, input1, face);
    it = ImageRegionIterator<OutputImageType>(output, face);
    bit.OverrideBoundaryCondition(&nbc);
    bit.GoToBegin();
    bit1.GoToBegin();
    it.GoToBegin();

    while (!bit.IsAtEnd())
    {
      gradMag = 0.0001;

      for (unsigned int i = 0; i < ImageDimension; ++i)
      {
        dx[i] = IP(m_ComputeCannyEdgeSlice[i], bit, m_ComputeCannyEdge1stDerivativeOper);
        gradMag += dx[i] * dx[i];

        dx1[i] = IP(m_ComputeCannyEdgeSlice[i], bit1, m_ComputeCannyEdge1stDerivativeOper);
      }

      gradMag = std::sqrt(static_cast<double>(gradMag));
      derivPos = zero;
      for (unsigned int i = 0; i < ImageDimension; ++i)
      {
        // First calculate the directional derivative
        directional[i] = dx[i] / gradMag;

        // Calculate gradient of 2nd derivative
        derivPos += dx1[i] * directional[i];
      }

      it.Value() = ((derivPos <= zero));
      it.Value() = it.Get() * gradMag;
      ++bit;
      ++bit1;
      ++it;
    }
  }
}

template <typename TInputImage, typename TOutputImage>
void
CannyEdgeDetectionImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "Variance: " << m_Variance << std::endl;
  os << indent << "MaximumError: " << m_MaximumError << std::endl;
  os << indent
     << "UpperThreshold: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_UpperThreshold)
     << std::endl;
  os << indent
     << "LowerThreshold: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_LowerThreshold)
     << std::endl;
  os << indent << "Center: " << m_Center << std::endl;
  os << indent << "Stride: " << m_Stride << std::endl;
  itkPrintSelfObjectMacro(GaussianFilter);
  itkPrintSelfObjectMacro(MultiplyImageFilter);
  itkPrintSelfObjectMacro(UpdateBuffer1);
}
} // namespace itk
#endif