File: itkDiscreteGaussianDerivativeImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (253 lines) | stat: -rw-r--r-- 9,024 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkDiscreteGaussianDerivativeImageFilter_h
#define itkDiscreteGaussianDerivativeImageFilter_h

#include "itkImageToImageFilter.h"
#include "itkImage.h"

namespace itk
{
/**
 * \class DiscreteGaussianDerivativeImageFilter
 * \brief Calculates image derivatives using discrete derivative gaussian kernels.
 * This filter calculates Gaussian derivative by separable convolution of an image
 * and a discrete Gaussian derivative operator (kernel).
 *
 * The Gaussian operators used here were described by Tony Lindeberg (Discrete
 * Scale-Space Theory and the Scale-Space Primal Sketch.  Dissertation. Royal
 * Institute of Technology, Stockholm, Sweden. May 1991.)
 *
 * The variance or standard deviation (sigma) will be evaluated as pixel units
 * if SetUseImageSpacing is off (false) or as physical units if
 * SetUseImageSpacing is on (true, default). The variance can be set
 * independently in each dimension.
 *
 * When the Gaussian kernel is small, this filter tends to run faster than
 * itk::RecursiveGaussianImageFilter.
 *
 * \author Ivan Macia, Vicomtech, Spain, https://www.vicomtech.org/en
 *
 * This implementation was taken from the Insight Journal paper:
 * https://www.insight-journal.org/browse/publication/179
 *
 * \sa GaussianDerivativeOperator
 * \sa Image
 * \sa Neighborhood
 * \sa NeighborhoodOperator
 *
 * \ingroup ImageEnhancement
 * \ingroup ITKImageFeature
 */

template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT DiscreteGaussianDerivativeImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(DiscreteGaussianDerivativeImageFilter);

  /** Standard class type aliases. */
  using Self = DiscreteGaussianDerivativeImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(DiscreteGaussianDerivativeImageFilter);

  /** Image type information. */
  using InputImageType = TInputImage;
  using OutputImageType = TOutputImage;

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  using OutputPixelType = typename TOutputImage::PixelType;
  using OutputInternalPixelType = typename TOutputImage::InternalPixelType;
  using InputPixelType = typename TInputImage::PixelType;
  using InputInternalPixelType = typename TInputImage::InternalPixelType;

  /** Extract some information from the image types.  Dimensionality
   * of the two images is assumed to be the same. */
  static constexpr unsigned int ImageDimension = TOutputImage::ImageDimension;

  /** Typedef of double containers */
  using ArrayType = FixedArray<double, Self::ImageDimension>;

  /** Array for storing desired order of derivatives */
  using OrderArrayType = FixedArray<unsigned int, Self::ImageDimension>;

  /** Order of derivatives in each dimension. Sets the derivative order
   * independently for each dimension, but see also
   * SetOrder(const unsigned int v). The default is 1 in each dimension. */
  itkSetMacro(Order, OrderArrayType);
  itkGetConstMacro(Order, const OrderArrayType);

  /** The variance for the discrete Gaussian kernel.  Sets the variance
   * independently for each dimension, but
   * see also SetVariance(const double v). The default is 0.0 in each
   * dimension. If UseImageSpacing is true, the units are the physical units
   * of your image.  If UseImageSpacing is false then the units are
   * pixels. */
  itkSetMacro(Variance, ArrayType);
  itkGetConstMacro(Variance, const ArrayType);

  /** The algorithm will size the discrete kernel so that the error
   * resulting from truncation of the kernel is no greater than
   * MaximumError. The default is 0.01 in each dimension. */
  itkSetMacro(MaximumError, ArrayType);
  itkGetConstMacro(MaximumError, const ArrayType);

  /** Set the kernel to be no wider than MaximumKernelWidth pixels,
   *  even if MaximumError demands it. The default is 32 pixels. */
  itkGetConstMacro(MaximumKernelWidth, int);
  itkSetMacro(MaximumKernelWidth, int);

  /** \brief Set/Get number of pieces to divide the input for the
   * internal composite pipeline. The upstream pipeline will not be
   * effected.
   *
   * The default value is $ImageDimension^2$.
   *
   * This parameter was introduced to reduce the memory used by images
   * internally, at the cost of performance.
   */
  itkSetMacro(InternalNumberOfStreamDivisions, unsigned int);
  itkGetConstMacro(InternalNumberOfStreamDivisions, unsigned int);

  /** Convenience Set methods for setting all dimensional parameters
   *  to the same values.
   */
  /*@{*/
  void
  SetOrder(const typename OrderArrayType::ValueType v)
  {
    OrderArrayType a;

    a.Fill(v);
    this->SetOrder(a);
  }

  void
  SetVariance(const typename ArrayType::ValueType v)
  {
    ArrayType a;

    a.Fill(v);
    this->SetVariance(a);
  }

  void
  SetMaximumError(const typename ArrayType::ValueType v)
  {
    ArrayType a;

    a.Fill(v);
    this->SetMaximumError(a);
  }

  /*@}*/

  /** Set/Get whether or not the filter will use the spacing of the input
      image in its calculations. Default is ImageSpacingOn. */
  itkSetMacro(UseImageSpacing, bool);
  itkGetConstMacro(UseImageSpacing, bool);
  itkBooleanMacro(UseImageSpacing);

  /** Set/Get the flag for calculating scale-space normalized derivatives.
   * Normalized derivatives are obtained multiplying by the scale
   * parameter t. */
  itkSetMacro(NormalizeAcrossScale, bool);
  itkGetConstMacro(NormalizeAcrossScale, bool);
  itkBooleanMacro(NormalizeAcrossScale);

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(OutputHasNumericTraitsCheck, (Concept::HasNumericTraits<OutputPixelType>));
  // End concept checking
#endif

protected:
  DiscreteGaussianDerivativeImageFilter()
  {
    m_Order.Fill(1);
    m_Variance.Fill(0.0);
    m_MaximumError.Fill(0.01);
    m_MaximumKernelWidth = 32;
    m_UseImageSpacing = true;
    m_NormalizeAcrossScale = false;
    m_InternalNumberOfStreamDivisions = ImageDimension * ImageDimension;
  }

  ~DiscreteGaussianDerivativeImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** DiscreteGaussianDerivativeImageFilter needs a larger input requested region
   * than the output requested region (larger by the size of the
   * Gaussian kernel).  As such, DiscreteGaussianDerivativeImageFilter needs to
   * provide an implementation for GenerateInputRequestedRegion() in
   * order to inform the pipeline execution model.
   * \sa ImageToImageFilter::GenerateInputRequestedRegion() */
  void
  GenerateInputRequestedRegion() override;

  /** Standard pipeline method. While this class does not implement a
   * ThreadedGenerateData(), its GenerateData() delegates all
   * calculations to an NeighborhoodOperatorImageFilter.  Since the
   * NeighborhoodOperatorImageFilter is multithreaded, this filter is
   * multithreaded by default. */
  void
  GenerateData() override;

private:
  /** The order of the derivatives in each dimensional direction. */
  OrderArrayType m_Order{};

  /** The variance of the gaussian blurring kernel in each dimensional
    direction. */
  ArrayType m_Variance{};

  /** The maximum error of the gaussian blurring kernel in each dimensional
   * direction. For definition of maximum error, see GaussianOperator.
   * \sa GaussianOperator */
  ArrayType m_MaximumError{};

  /** Maximum allowed kernel width for any dimension of the discrete Gaussian
      approximation */
  int m_MaximumKernelWidth{};

  /** Flag to indicate whether to use image spacing */
  bool m_UseImageSpacing{};

  /** Flag for scale-space normalization of derivatives. */
  bool m_NormalizeAcrossScale{};

  /** Number of pieces to divide the input on the internal composite
  pipeline. The upstream pipeline will not be effected. */
  unsigned int m_InternalNumberOfStreamDivisions{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkDiscreteGaussianDerivativeImageFilter.hxx"
#endif

#endif