File: itkHessianRecursiveGaussianImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (173 lines) | stat: -rw-r--r-- 6,391 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkHessianRecursiveGaussianImageFilter_h
#define itkHessianRecursiveGaussianImageFilter_h

#include "itkRecursiveGaussianImageFilter.h"
#include "itkNthElementImageAdaptor.h"
#include "itkImage.h"
#include "itkSymmetricSecondRankTensor.h"
#include "itkPixelTraits.h"

namespace itk
{
/**
 * \class HessianRecursiveGaussianImageFilter
 * \brief Computes the Hessian matrix of an image by convolution
 *        with the Second and Cross derivatives of a Gaussian.
 *
 * This filter is implemented using the recursive gaussian
 * filters
 *
 *
 * \ingroup GradientFilters
 * \ingroup SingleThreaded
 * \ingroup ITKImageFeature
 */
template <typename TInputImage,
          typename TOutputImage =
            Image<SymmetricSecondRankTensor<typename NumericTraits<typename TInputImage::PixelType>::RealType,
                                            TInputImage::ImageDimension>,
                  TInputImage::ImageDimension>>
class ITK_TEMPLATE_EXPORT HessianRecursiveGaussianImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(HessianRecursiveGaussianImageFilter);

  /** Standard class type aliases. */
  using Self = HessianRecursiveGaussianImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Pixel Type of the input image */
  using InputImageType = TInputImage;
  using PixelType = typename TInputImage::PixelType;
  using RealType = typename NumericTraits<PixelType>::RealType;

  /** Image dimension. */
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;

  /** Number of smoothing filters. */
  static constexpr unsigned int NumberOfSmoothingFilters =
    (TInputImage::ImageDimension > 2) ? (TInputImage::ImageDimension - 2) : (0);

  /** Define the image type for internal computations
      RealType is usually 'double' in NumericTraits.
      Here we prefer float in order to save memory.  */

  using InternalRealType = float;
  using RealImageType = Image<InternalRealType, TInputImage::ImageDimension>;

  /**  Output Image Nth Element Adaptor
   *  This adaptor allows to use conventional scalar
   *  smoothing filters to compute each one of the
   *  components of the gradient image pixels. */
  using OutputImageAdaptorType = NthElementImageAdaptor<TOutputImage, InternalRealType>;

  using OutputImageAdaptorPointer = typename OutputImageAdaptorType::Pointer;

  /**  Smoothing filter type */
  using GaussianFilterType = RecursiveGaussianImageFilter<RealImageType, RealImageType>;

  /**  Derivative filter type, it will be the first in the pipeline  */
  using DerivativeFilterAType = RecursiveGaussianImageFilter<InputImageType, RealImageType>;

  using DerivativeFilterBType = RecursiveGaussianImageFilter<RealImageType, RealImageType>;

  /**  Pointer to a gaussian filter.  */
  using GaussianFilterPointer = typename GaussianFilterType::Pointer;
  using GaussianFiltersArray = std::vector<GaussianFilterPointer>;

  /**  Pointer to a derivative filter.  */
  using DerivativeFilterAPointer = typename DerivativeFilterAType::Pointer;
  using DerivativeFilterBPointer = typename DerivativeFilterBType::Pointer;

  /**  Pointer to the Output Image */
  using OutputImagePointer = typename TOutputImage::Pointer;

  /** Type of the output Image */
  using OutputImageType = TOutputImage;
  using OutputPixelType = typename OutputImageType::PixelType;
  using OutputComponentType = typename PixelTraits<OutputPixelType>::ValueType;

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(HessianRecursiveGaussianImageFilter);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Set/Get Sigma value. Sigma is measured in the units of image spacing.  */
  void
  SetSigma(RealType sigma);
  RealType
  GetSigma() const;

  /** Define which normalization factor will be used for the Gaussian
   *  \sa  RecursiveGaussianImageFilter::SetNormalizeAcrossScale
   */
  void
  SetNormalizeAcrossScale(bool normalize);
  itkGetConstMacro(NormalizeAcrossScale, bool);
  itkBooleanMacro(NormalizeAcrossScale);

  /** HessianRecursiveGaussianImageFilter needs all of the input to produce an
   * output. Therefore, HessianRecursiveGaussianImageFilter needs to provide
   * an implementation for GenerateInputRequestedRegion in order to inform
   * the pipeline execution model.
   * \sa ImageToImageFilter::GenerateInputRequestedRegion() */
  void
  GenerateInputRequestedRegion() override;

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<PixelType>));
  itkConceptMacro(OutputHasPixelTraitsCheck, (Concept::HasPixelTraits<OutputPixelType>));
  // End concept checking
#endif

protected:
  HessianRecursiveGaussianImageFilter();
  ~HessianRecursiveGaussianImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Generate Data */
  void
  GenerateData() override;

  // Override since the filter produces the entire dataset
  void
  EnlargeOutputRequestedRegion(DataObject * output) override;

private:
  GaussianFiltersArray      m_SmoothingFilters{};
  DerivativeFilterAPointer  m_DerivativeFilterA{};
  DerivativeFilterBPointer  m_DerivativeFilterB{};
  OutputImageAdaptorPointer m_ImageAdaptor{};

  /** Normalize the image across scale space */
  bool m_NormalizeAcrossScale{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkHessianRecursiveGaussianImageFilter.hxx"
#endif

#endif