1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkHessianToObjectnessMeasureImageFilter_h
#define itkHessianToObjectnessMeasureImageFilter_h
#include "itkSymmetricSecondRankTensor.h"
#include "itkImageToImageFilter.h"
namespace itk
{
/**
* \class HessianToObjectnessMeasureImageFilter
* \brief A filter to enhance M-dimensional objects in N-dimensional images
*
* The objectness measure is a generalization of Frangi's vesselness measure,
* which is based on the analysis of the Hessian eigen system. The filter
* can enhance blob-like structures (M=0), vessel-like structures (M=1), 2D
* plate-like structures (M=2), hyper-plate-like structures (M=3) in N-dimensional
* images, with M<N.
* The filter takes an image of a Hessian pixels ( SymmetricSecondRankTensor pixels
* pixels ) and produces an enhanced image. The Hessian input image can be produced
* using itk::HessianRecursiveGaussianImageFilter.
*
*
* \par References
* Frangi, AF, Niessen, WJ, Vincken, KL, & Viergever, MA (1998). Multiscale Vessel
* Enhancement Filtering. In Wells, WM, Colchester, A, & Delp, S, Editors, MICCAI '98
* Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer
* Science, pages 130-137, Springer Verlag, 1998.
*
* Additional information can be from in the Insight Journal:
* https://www.insight-journal.org/browse/publication/175
*
* \author Luca Antiga Ph.D. Medical Imaging Unit,
* Bioengineering Department, Mario Negri Institute, Italy.
*
* \sa MultiScaleHessianBasedMeasureImageFilter
* \sa Hessian3DToVesselnessMeasureImageFilter
* \sa HessianRecursiveGaussianImageFilter
* \sa SymmetricEigenAnalysisImageFilter
* \sa SymmetricSecondRankTensor
*
* \ingroup ITKImageFeature
*/
template <typename TInputImage, typename TOutputImage>
class ITK_TEMPLATE_EXPORT HessianToObjectnessMeasureImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(HessianToObjectnessMeasureImageFilter);
/** Standard class type aliases. */
using Self = HessianToObjectnessMeasureImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using typename Superclass::InputImageType;
using typename Superclass::OutputImageType;
using InputPixelType = typename InputImageType::PixelType;
using OutputPixelType = typename OutputImageType::PixelType;
using OutputImageRegionType = typename OutputImageType::RegionType;
/** Image dimension */
static constexpr unsigned int ImageDimension = InputImageType::ImageDimension;
using EigenValueType = double;
using EigenValueArrayType = itk::FixedArray<EigenValueType, Self::ImageDimension>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(HessianToObjectnessMeasureImageFilter);
/** Set/Get Alpha, the weight corresponding to R_A
* (the ratio of the smallest eigenvalue that has to be large to the larger ones).
* Smaller values lead to increased sensitivity to the object dimensionality. */
itkSetMacro(Alpha, double);
itkGetConstMacro(Alpha, double);
/** Set/Get Beta, the weight corresponding to R_B
* (the ratio of the largest eigenvalue that has to be small to the larger ones).
* Smaller values lead to increased sensitivity to the object dimensionality. */
itkSetMacro(Beta, double);
itkGetConstMacro(Beta, double);
/** Set/Get Gamma, the weight corresponding to S
* (the Frobenius norm of the Hessian matrix, or second-order structureness) */
itkSetMacro(Gamma, double);
itkGetConstMacro(Gamma, double);
/** Toggle scaling the objectness measure with the magnitude of the largest
absolute eigenvalue */
itkSetMacro(ScaleObjectnessMeasure, bool);
itkGetConstMacro(ScaleObjectnessMeasure, bool);
itkBooleanMacro(ScaleObjectnessMeasure);
/** Set/Get the dimensionality of the object (0: points (blobs),
* 1: lines (vessels), 2: planes (plate-like structures), 3: hyper-planes.
* ObjectDimension must be smaller than ImageDimension. */
itkSetMacro(ObjectDimension, unsigned int);
itkGetConstMacro(ObjectDimension, unsigned int);
/** Enhance bright structures on a dark background if true, the opposite if
false. Default is "On" (equivalent to vesselness). */
itkSetMacro(BrightObject, bool);
itkGetConstMacro(BrightObject, bool);
itkBooleanMacro(BrightObject);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(DoubleConvertibleToOutputCheck, (Concept::Convertible<double, OutputPixelType>));
// End concept checking
#endif
protected:
HessianToObjectnessMeasureImageFilter();
~HessianToObjectnessMeasureImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
void
VerifyPreconditions() ITKv5_CONST override;
void
DynamicThreadedGenerateData(const OutputImageRegionType & outputRegionForThread) override;
private:
// functor used to sort the eigenvalues are to be sorted
// |e1|<=|e2|<=...<=|eN|
//
// Returns ( itk::Math::abs(a) < itk::Math::abs(b) )
struct AbsLessCompare
{
bool
operator()(EigenValueType a, EigenValueType b)
{
return itk::Math::abs(a) < itk::Math::abs(b);
}
};
double m_Alpha{ 0.5 };
double m_Beta{ 0.5 };
double m_Gamma{ 5.0 };
unsigned int m_ObjectDimension{ 1 };
bool m_BrightObject{ true };
bool m_ScaleObjectnessMeasure{ true };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkHessianToObjectnessMeasureImageFilter.hxx"
#endif
#endif
|