File: itkLaplacianRecursiveGaussianImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (142 lines) | stat: -rw-r--r-- 4,865 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLaplacianRecursiveGaussianImageFilter_h
#define itkLaplacianRecursiveGaussianImageFilter_h

#include "itkRecursiveGaussianImageFilter.h"
#include "itkImage.h"
#include "itkCommand.h"

namespace itk
{
/**
 * \class LaplacianRecursiveGaussianImageFilter
 * \brief Computes the Laplacian of Gaussian (LoG) of an image.
 *
 * Computes the Laplacian of Gaussian (LoG) of an image by convolution
 * with the second derivative of a Gaussian.
 * This filter is implemented using the recursive gaussian filters.
 *
 * \ingroup GradientFilters
 * \ingroup MultiThreaded
 * \ingroup ITKImageFeature
 *
 * \sphinx
 * \sphinxexample{Filtering/ImageFeature/ComputeLaplacian,Compute Laplacian}
 * \endsphinx
 */
template <typename TInputImage, typename TOutputImage = TInputImage>
class ITK_TEMPLATE_EXPORT LaplacianRecursiveGaussianImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(LaplacianRecursiveGaussianImageFilter);

  /** Standard class type aliases. */
  using Self = LaplacianRecursiveGaussianImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Pixel Type of the input image */
  using InputImageType = TInputImage;
  using PixelType = typename InputImageType::PixelType;

  /** Image dimension. */
  static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;

  static constexpr unsigned int NumberOfSmoothingFilters = ImageDimension - 1;

  using RealType = typename NumericTraits<PixelType>::RealType;

  /** Define the image type for internal computations.
      RealType is usually 'double' in NumericTraits.
      Here we prefer float in order to save memory.  */
  using InternalRealType = float;
  using RealImageType = Image<InternalRealType, Self::ImageDimension>;

  /**  Smoothing filter type */
  using GaussianFilterType = RecursiveGaussianImageFilter<RealImageType, RealImageType>;

  /**  Derivative filter type, it will be the first in the pipeline  */
  using DerivativeFilterType = RecursiveGaussianImageFilter<InputImageType, RealImageType>;

  /**  Pointer to a gaussian filter.  */
  using GaussianFilterPointer = typename GaussianFilterType::Pointer;

  /**  Pointer to a derivative filter.  */
  using DerivativeFilterPointer = typename DerivativeFilterType::Pointer;

  /**  Pointer to the Output Image */
  using OutputImagePointer = typename TOutputImage::Pointer;

  /** Type of the output Image */
  using OutputImageType = TOutputImage;
  using OutputPixelType = typename OutputImageType::PixelType;


  /**  Command for observing progress of internal pipeline filters */
  using CommandType = MemberCommand<Self>;
  using CommandPointer = typename CommandType::Pointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(LaplacianRecursiveGaussianImageFilter);

  /** Set/Get Sigma value. Sigma is measured in the units of image spacing. */
  void
  SetSigma(RealType sigma);
  RealType
  GetSigma() const;

  /** Define which normalization factor will be used for the Gaussian
   *  \sa  RecursiveGaussianImageFilter::SetNormalizeAcrossScale
   */
  void
  SetNormalizeAcrossScale(bool normalize);
  itkGetConstMacro(NormalizeAcrossScale, bool);

protected:
  LaplacianRecursiveGaussianImageFilter();
  ~LaplacianRecursiveGaussianImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Generate Data */
  void
  GenerateData() override;

  // Override since the filter produces the entire dataset
  void
  EnlargeOutputRequestedRegion(DataObject * output) override;

private:
  GaussianFilterPointer   m_SmoothingFilters[NumberOfSmoothingFilters]{};
  DerivativeFilterPointer m_DerivativeFilter{};

  /** Normalize the image across scale space */
  bool m_NormalizeAcrossScale{};
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkLaplacianRecursiveGaussianImageFilter.hxx"
#endif

#endif