File: itkLaplacianSharpeningImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (169 lines) | stat: -rw-r--r-- 5,972 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkLaplacianSharpeningImageFilter_hxx
#define itkLaplacianSharpeningImageFilter_hxx

#include "itkLaplacianImageFilter.h"
#include "itkMinimumMaximumImageFilter.h"
#include "itkStatisticsImageFilter.h"
#include "itkAddImageFilter.h"
#include "itkMultiplyImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "itkUnaryGeneratorImageFilter.h"

namespace itk
{

template <typename TInputImage, typename TOutputImage>
void
LaplacianSharpeningImageFilter<TInputImage, TOutputImage>::EnlargeOutputRequestedRegion(DataObject * output)
{
  Superclass::EnlargeOutputRequestedRegion(output);

  if (output != nullptr)
  {
    output->SetRequestedRegionToLargestPossibleRegion();
  }
}

template <typename TInputImage, typename TOutputImage>
void
LaplacianSharpeningImageFilter<TInputImage, TOutputImage>::GenerateData()
{

  auto localInput = TInputImage::New();
  localInput->Graft(this->GetInput());

  // Calculate the needed input image statistics

  typename StatisticsImageFilter<InputImageType>::Pointer inputCalculator =
    StatisticsImageFilter<InputImageType>::New();

  inputCalculator->SetInput(localInput);
  inputCalculator->Update();

  auto inputMinimum = static_cast<RealType>(inputCalculator->GetMinimum());
  auto inputMaximum = static_cast<RealType>(inputCalculator->GetMaximum());
  auto inputMean = static_cast<RealType>(inputCalculator->GetMean());

  auto inputShift = inputMinimum;
  auto inputScale = inputMaximum - inputMinimum;
  inputCalculator = nullptr;

  // Calculate the Laplacian filtered image

  using RealImageType = Image<RealType, ImageDimension>;

  // Create the Laplacian operator
  LaplacianOperator<RealType, ImageDimension> oper;
  double                                      s[ImageDimension];
  for (unsigned int i = 0; i < ImageDimension; ++i)
  {
    if (localInput->GetSpacing()[i] == 0.0)
    {
      itkExceptionMacro("Image spacing cannot be zero");
    }
    else if (this->m_UseImageSpacing)
    {
      s[i] = 1.0 / localInput->GetSpacing()[i];
    }
    else
    {
      s[i] = 1.0;
    }
  }
  oper.SetDerivativeScalings(s);
  oper.CreateOperator();
  // Calculate the Laplacian filtered image

  // do calculations in floating point
  using RealImageType = Image<RealType, ImageDimension>;
  using NOIF = NeighborhoodOperatorImageFilter<InputImageType, RealImageType>;
  ZeroFluxNeumannBoundaryCondition<InputImageType> nbc;

  auto laplacianFilter = NOIF::New();
  laplacianFilter->OverrideBoundaryCondition(static_cast<typename NOIF::ImageBoundaryConditionPointerType>(&nbc));

  //
  // set up the mini-pipeline
  //
  laplacianFilter->SetOperator(oper);
  laplacianFilter->SetInput(localInput);
  laplacianFilter->Update();

  auto filteredMinMaxFilter = MinimumMaximumImageFilter<RealImageType>::New();
  filteredMinMaxFilter->SetInput(laplacianFilter->GetOutput());
  filteredMinMaxFilter->Update();

  RealType filteredShift = static_cast<RealType>(filteredMinMaxFilter->GetMinimum());
  RealType filteredScale = static_cast<RealType>(filteredMinMaxFilter->GetMaximum()) - filteredShift;
  filteredMinMaxFilter = nullptr;

  // Combine the input image and the laplacian image
  auto binaryFilter = itk::BinaryGeneratorImageFilter<RealImageType, InputImageType, RealImageType>::New();
  binaryFilter->SetInput1(laplacianFilter->GetOutput());
  binaryFilter->SetInput2(localInput);


  binaryFilter->SetFunctor(
    [filteredShift, inputScale, filteredScale, inputShift](const typename RealImageType::PixelType &  filteredPixel,
                                                           const typename InputImageType::PixelType & inputPixel) {
      return inputPixel - ((filteredPixel - filteredShift) * (inputScale / filteredScale) + inputShift);
    });
  binaryFilter->InPlaceOn();
  binaryFilter->Update();

  // Calculate needed combined image statistics
  typename StatisticsImageFilter<RealImageType>::Pointer enhancedCalculator =
    StatisticsImageFilter<RealImageType>::New();

  enhancedCalculator->SetInput(binaryFilter->GetOutput());
  enhancedCalculator->Update();

  auto enhancedMean = static_cast<RealType>(enhancedCalculator->GetMean());
  enhancedCalculator = nullptr;

  // Shift and window the output
  auto shiftAndClampFilter = UnaryGeneratorImageFilter<RealImageType, OutputImageType>::New();

  shiftAndClampFilter->SetInput(binaryFilter->GetOutput());
  shiftAndClampFilter->SetFunctor(
    [enhancedMean, inputMean, inputMinimum, inputMaximum](const typename RealImageType::PixelType & value) {
      // adjust value to make the mean intensities before and after match
      auto shiftedValue = value - enhancedMean + inputMean;
      return static_cast<OutputPixelType>(std::clamp(shiftedValue, inputMinimum, inputMaximum));
    });
  shiftAndClampFilter->GraftOutput(this->GetOutput());
  shiftAndClampFilter->Update();


  this->GraftOutput(shiftAndClampFilter->GetOutput());
}

template <typename TInputImage, typename TOutputImage>
void
LaplacianSharpeningImageFilter<TInputImage, TOutputImage>::PrintSelf(std::ostream & os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "UseImageSpacing: " << (m_UseImageSpacing ? "On" : "Off") << std::endl;
}

} // end namespace itk

#endif