1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkUnsharpMaskImageFilter_hxx
#define itkUnsharpMaskImageFilter_hxx
#include "itkBinaryGeneratorImageFilter.h"
#include "itkNumericTraits.h"
#include "itkProgressAccumulator.h"
namespace itk
{
template <typename TInputImage, typename TOutputImage, typename TInternalPrecision>
UnsharpMaskImageFilter<TInputImage, TOutputImage, TInternalPrecision>::UnsharpMaskImageFilter()
: m_Amount(0.5)
, m_Threshold(0)
, m_Clamp(std::is_integral_v<OutputPixelType>)
// clamping is on for integral types, and off for floating types
// this gives intuitive behavior for integral types
// and skips min/max checks for floating types
{
m_Sigmas.Fill(1.0);
}
template <typename TInputImage, typename TOutputImage, typename TInternalPrecision>
void
UnsharpMaskImageFilter<TInputImage, TOutputImage, TInternalPrecision>::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method. this should
// copy the output requested region to the input requested region
Superclass::GenerateInputRequestedRegion();
// This filter needs all of the input
InputImagePointer image = const_cast<InputImageType *>(this->GetInput());
if (image)
{
image->SetRequestedRegion(this->GetInput()->GetLargestPossibleRegion());
}
}
template <typename TInputImage, typename TOutputImage, typename TInternalPrecision>
void
UnsharpMaskImageFilter<TInputImage, TOutputImage, TInternalPrecision>::VerifyPreconditions() ITKv5_CONST
{
Superclass::VerifyPreconditions();
if (m_Threshold < 0.0)
{
itkExceptionMacro("Threshold must be non-negative!");
}
}
template <typename TInputImage, typename TOutputImage, typename TInternalPrecision>
void
UnsharpMaskImageFilter<TInputImage, TOutputImage, TInternalPrecision>::GenerateData()
{
auto input = TInputImage::New();
input->Graft(const_cast<TInputImage *>(this->GetInput()));
auto gaussianF = GaussianType::New();
gaussianF->SetInput(input);
gaussianF->SetSigmaArray(m_Sigmas);
gaussianF->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
using USMType = UnsharpMaskingFunctor<InputPixelType, TInternalPrecision, OutputPixelType>;
using BinaryFunctorType =
BinaryGeneratorImageFilter<TInputImage, typename GaussianType::OutputImageType, TOutputImage>;
auto functorF = BinaryFunctorType::New();
functorF->SetInput1(this->GetInput());
functorF->SetInput2(gaussianF->GetOutput());
USMType usmT(m_Amount, m_Threshold, m_Clamp);
functorF->SetFunctor(usmT);
functorF->SetNumberOfWorkUnits(this->GetNumberOfWorkUnits());
auto progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
progress->RegisterInternalFilter(gaussianF, 0.7);
progress->RegisterInternalFilter(functorF, 0.3);
functorF->GraftOutput(this->GetOutput());
functorF->Update();
this->GraftOutput(functorF->GetOutput());
}
template <typename TInputImage, typename TOutputImage, typename TInternalPrecision>
void
UnsharpMaskImageFilter<TInputImage, TOutputImage, TInternalPrecision>::PrintSelf(std::ostream & os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "Sigmas: " << m_Sigmas << std::endl;
os << indent << "Amount: " << m_Amount << std::endl;
os << indent << "Threshold: " << m_Threshold << std::endl;
os << indent << "Clamp: " << m_Clamp << std::endl;
}
} // end namespace itk
#endif
|