1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <fstream>
#include "itkBilateralImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkTestingMacros.h"
int
itkBilateralImageFilterTest3(int argc, char * argv[])
{
if (argc < 3)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv) << " InputImage BaselineImage" << std::endl;
return EXIT_FAILURE;
}
using PixelType = unsigned char;
using myImage = itk::Image<PixelType, 2>;
itk::ImageFileReader<myImage>::Pointer input = itk::ImageFileReader<myImage>::New();
input->SetFileName(argv[1]);
// Create a filter
using FilterType = itk::BilateralImageFilter<myImage, myImage>;
auto filter1 = FilterType::New();
filter1->SetInput(input->GetOutput());
auto filter2 = FilterType::New();
filter2->SetInput(filter1->GetOutput());
auto filter3 = FilterType::New();
filter3->SetInput(filter2->GetOutput());
// Instead of using a single aggressive smoothing filter, use 3
// less aggressive filters.
//
// These settings match the "wedding" cake image (cake_easy.png) where
// the signal to noise ratio is 5 (step heights near 100 units,
// noise sigma near 20 units). A single filter stage with these
// settings cuts the noise level in half. These three stages should
// reduce the amount of noise by a factor of 8. This is comparable to
// the noise reduction in using a single stage with parameters
// (4.0, 50.0). The difference is that with 3 less aggressive stages
// the edges are preserved better.
auto domainSigma = 4.0;
filter1->SetDomainSigma(domainSigma);
auto rangeSigma = 20.0;
filter1->SetRangeSigma(rangeSigma);
auto domainMu = 2.5;
filter1->SetDomainMu(domainMu);
filter2->SetDomainSigma(domainSigma);
filter2->SetRangeSigma(rangeSigma);
filter2->SetDomainMu(domainMu);
filter3->SetDomainSigma(domainSigma);
filter3->SetRangeSigma(rangeSigma);
filter3->SetDomainMu(domainMu);
ITK_TRY_EXPECT_NO_EXCEPTION(input->Update());
ITK_TRY_EXPECT_NO_EXCEPTION(filter3->Update());
// Generate test image
itk::ImageFileWriter<myImage>::Pointer writer;
writer = itk::ImageFileWriter<myImage>::New();
writer->SetInput(filter3->GetOutput());
writer->SetFileName(argv[2]);
ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());
std::cout << "Test finished." << std::endl;
return EXIT_SUCCESS;
}
|