1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Disable warning for long symbol names in this file only
#include "itkDiscreteGaussianDerivativeImageFilter.h"
namespace
{
bool
NormalizeSineWave(double frequencyPerImage, unsigned int order, double pixelSpacing = 1.0)
{
// For an image f(x) = sin ( w*x ), where w is a measure of
// frequency, this method verifies that the normalized scale-scale
// is with in reasonable tolerance of the theoretical value.
constexpr unsigned int ImageDimension = 1;
constexpr unsigned int imageSize = 1024;
const double tolerance1 = std::pow(.001, 1.0 / order); // still larger than it should be!
double frequency = frequencyPerImage * 2.0 * itk::Math::pi / (imageSize * pixelSpacing);
// The theoretical maximal value should occur at this sigma
double sigmaMax = std::sqrt(static_cast<double>(order)) / frequency;
// The theoreical maximal value of the derivative, obtained at sigmaMax
double expectedMax = std::pow(static_cast<double>(order), order * 0.5) * std::exp(-0.5 * order);
using ImageType = itk::Image<double, ImageDimension>;
auto image = ImageType::New();
ImageType::SizeType size;
size.Fill(imageSize);
image->SetRegions(ImageType::RegionType(size));
image->Allocate();
ImageType::SpacingType spacing;
spacing.Fill(pixelSpacing);
image->SetSpacing(spacing);
itk::ImageRegionIterator<ImageType> iter(image, image->GetBufferedRegion());
// Create a sine wave image
while (!iter.IsAtEnd())
{
ImageType::PointType p;
image->TransformIndexToPhysicalPoint(iter.GetIndex(), p);
const double x = p[0];
double value = std::sin(x * frequency);
iter.Set(value);
++iter;
}
using GaussianFilterType = itk::DiscreteGaussianDerivativeImageFilter<ImageType, ImageType>;
auto filter = GaussianFilterType::New();
filter->SetInput(image);
filter->SetVariance(itk::Math::sqr(sigmaMax));
filter->SetOrder(order);
filter->SetUseImageSpacing(true);
filter->SetMaximumError(.0005);
filter->SetMaximumKernelWidth(500);
filter->SetNormalizeAcrossScale(true);
ImageType::Pointer outputImage = filter->GetOutput();
outputImage->Update();
// Maximal value of the first derivative
double maxLx = itk::NumericTraits<double>::NonpositiveMin();
itk::ImageRegionConstIterator<ImageType> oiter(outputImage, outputImage->GetBufferedRegion());
while (!oiter.IsAtEnd())
{
maxLx = std::max(maxLx, oiter.Get());
++oiter;
}
// Check if the maximal is obtained with a little bit smaller Gaussian
filter->SetVariance(itk::Math::sqr(sigmaMax * 0.95));
outputImage->Update();
oiter.GoToBegin();
while (!oiter.IsAtEnd())
{
if (maxLx < oiter.Get() && !itk::Math::FloatAlmostEqual(maxLx, oiter.Get(), 10, tolerance1))
{
std::cout.precision(static_cast<int>(itk::Math::abs(std::log10(tolerance1))));
std::cout << "Error at period: " << 1.0 / frequency << std::endl;
std::cout << "Expected maximal value: " << maxLx << ", differs from: " << oiter.Get() << " by more than "
<< tolerance1 << std::endl;
return false;
}
++oiter;
}
// Check if the maximumal value is obtained with a little bit bigger Gaussian
filter->SetVariance(itk::Math::sqr(sigmaMax * 1.05));
outputImage->Update();
oiter.GoToBegin();
while (!oiter.IsAtEnd())
{
if (maxLx < oiter.Get() && !itk::Math::FloatAlmostEqual(maxLx, oiter.Get(), 10, tolerance1))
{
std::cout.precision(static_cast<int>(itk::Math::abs(std::log10(tolerance1))));
std::cout << "Error at period: " << 1.0 / frequency << std::endl;
std::cout << "Expected maximal value: " << maxLx << ", differs from: " << oiter.Get() << " by more than "
<< tolerance1 << std::endl;
return false;
}
++oiter;
}
constexpr double tolerance2 = 0.01;
if (!itk::Math::FloatAlmostEqual(maxLx, expectedMax, 10, tolerance2))
{
std::cout << "Error at frequency: " << frequencyPerImage << std::endl;
std::cout << "Expected maximal value: " << expectedMax << ", differs from: " << maxLx << " by more than "
<< tolerance2 << std::endl;
return false;
}
return true;
}
} // namespace
int
itkDiscreteGaussianDerivativeImageFilterScaleSpaceTest(int, char *[])
{
bool pass = true;
// Testing first order Gaussian
pass &= NormalizeSineWave(16, 1);
pass &= NormalizeSineWave(32, 1);
pass &= NormalizeSineWave(64, 1);
// Testing second order Gaussian
pass &= NormalizeSineWave(16, 2);
pass &= NormalizeSineWave(32, 2);
pass &= NormalizeSineWave(64, 2);
// Testing spacing invariance
pass &= NormalizeSineWave(16, 2, 0.01);
pass &= NormalizeSineWave(16, 2, 100);
if (!pass)
{
std::cout << "Test failed!" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test finished." << std::endl;
return EXIT_SUCCESS;
}
|