File: itkDiscreteGaussianDerivativeImageFilterTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (144 lines) | stat: -rw-r--r-- 5,037 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkDiscreteGaussianDerivativeImageFilter.h"
#include "itkSimpleFilterWatcher.h"
#include "itkTestingMacros.h"


/** Calculate the Gaussian derivatives at non-zero points of a Gaussian
 * input image. For derivative calculation the class
 * itkDiscreteGaussianDerivativeImageFilter is used.
 * This example operates on 2D images.
 */
int
itkDiscreteGaussianDerivativeImageFilterTest(int argc, char * argv[])
{
  if (argc < 6)
  {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv)
              << "inputFileName"
                 " outputFileName"
                 " orderX"
                 " orderY"
                 " sigma"
                 " [maximumError]"
                 " [maximumKernelWidth]"
              << std::endl;
    return EXIT_FAILURE;
  }

  constexpr unsigned int Dimension = 2;

  using PixelType = float;
  using OutputPixelType = unsigned short;

  using ImageType = itk::Image<PixelType, Dimension>;
  using OutputImageType = itk::Image<OutputPixelType, Dimension>;

  using ReaderType = itk::ImageFileReader<ImageType>;

  auto reader = ReaderType::New();
  reader->SetFileName(argv[1]);

  ITK_TRY_EXPECT_NO_EXCEPTION(reader->Update());


  using DerivativeFilterType = itk::DiscreteGaussianDerivativeImageFilter<ImageType, ImageType>;
  auto derivativeFilter = DerivativeFilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(derivativeFilter, DiscreteGaussianDerivativeImageFilter, ImageToImageFilter);


  itk::SimpleFilterWatcher watcher(derivativeFilter, "DiscreteGaussianDerivativeImageFilter");

  derivativeFilter->SetInput(reader->GetOutput());

  // Now proceed to apply the Gaussian derivative filter in both directions

  DerivativeFilterType::OrderArrayType order;
  order[0] = std::stoi(argv[3]);
  order[1] = std::stoi(argv[4]);

  derivativeFilter->SetOrder(order);
  ITK_TEST_SET_GET_VALUE(order, derivativeFilter->GetOrder());

  double sigma = std::stod(argv[5]);

  DerivativeFilterType::ArrayType::ValueType maxErrorVal = 0.001;
  int                                        maxKernelWidth = 100;

  if (argc > 7)
  {
    maxErrorVal = static_cast<DerivativeFilterType::ArrayType::ValueType>(std::stod(argv[6]));
  }
  else if (argc > 8)
  {
    maxKernelWidth = std::stoi(argv[7]);
  }

  DerivativeFilterType::ArrayType variance;
  variance.Fill(sigma * sigma);

  derivativeFilter->SetVariance(variance);
  ITK_TEST_SET_GET_VALUE(variance, derivativeFilter->GetVariance());

  DerivativeFilterType::ArrayType maxError;
  maxError.Fill(maxErrorVal);

  derivativeFilter->SetMaximumError(maxErrorVal);
  ITK_TEST_SET_GET_VALUE(maxError, derivativeFilter->GetMaximumError());

  derivativeFilter->SetMaximumKernelWidth(maxKernelWidth);
  ITK_TEST_SET_GET_VALUE(maxKernelWidth, derivativeFilter->GetMaximumKernelWidth());

  bool useImageSpacing = true;
  ITK_TEST_SET_GET_BOOLEAN(derivativeFilter, UseImageSpacing, useImageSpacing);

  bool normalizeAcrossScale = false;
  ITK_TEST_SET_GET_BOOLEAN(derivativeFilter, NormalizeAcrossScale, normalizeAcrossScale);

  unsigned int internalNumberOfStreamDivisions = DerivativeFilterType::InputImageType::GetImageDimension() *
                                                 DerivativeFilterType::InputImageType::GetImageDimension();
  derivativeFilter->SetInternalNumberOfStreamDivisions(internalNumberOfStreamDivisions);
  ITK_TEST_SET_GET_VALUE(internalNumberOfStreamDivisions, derivativeFilter->GetInternalNumberOfStreamDivisions());


  using RescaleFilterType = itk::RescaleIntensityImageFilter<ImageType, OutputImageType>;
  auto rescaler = RescaleFilterType::New();
  rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());
  rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());
  rescaler->SetInput(derivativeFilter->GetOutput());


  // Write the output image
  using WriterType = itk::ImageFileWriter<OutputImageType>;
  auto writer = WriterType::New();
  writer->SetFileName(argv[2]);
  writer->SetInput(rescaler->GetOutput());

  ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());


  std::cout << "Test finished." << std::endl;
  return EXIT_SUCCESS;
}