File: itkUnsharpMaskImageFilterTestSimple.cxx

package info (click to toggle)
insighttoolkit5 5.4.3-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 704,384 kB
  • sloc: cpp: 783,592; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,874; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 464; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (179 lines) | stat: -rw-r--r-- 5,504 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkUnsharpMaskImageFilter.h"
#include "itkSimpleFilterWatcher.h"
#include "itkTestingMacros.h"

int
itkUnsharpMaskImageFilterTestSimple(int, char *[])
{
  // Define the dimension of the images
  constexpr unsigned int Dimension = 2;

  // Define the pixel types of the images
  using PixelType = float;

  // Declare the types of the images
  using InputImageType = itk::Image<PixelType, Dimension>;

  // Declare the type of the index to access images
  using IndexType = itk::Index<Dimension>;

  // Declare the type of the size
  using SizeType = itk::Size<Dimension>;

  // Declare the type of the Region
  using RegionType = itk::ImageRegion<Dimension>;

  // Create the input image
  auto inputImage = InputImageType::New();

  // Define its size, and start index
  SizeType size;
  size[0] = 20;
  size[1] = 4;

  IndexType start;
  start.Fill(0);

  RegionType region;
  region.SetIndex(start);
  region.SetSize(size);

  // Initialize the input image
  inputImage->SetRegions(region);
  inputImage->Allocate();

  // Declare an Iterator type for the input image
  using InputImageIteratorType = itk::ImageRegionIteratorWithIndex<InputImageType>;

  // Create one iterator for the input Image (this is a light object)
  InputImageIteratorType it(inputImage, inputImage->GetRequestedRegion());

  // Initialize the contents of the input image
  while (!it.IsAtEnd())
  {
    if (it.GetIndex()[0] > itk::IndexValueType(size[0] / 2))
    {
      it.Set(1.0);
    }
    else
    {
      it.Set(0.0);
    }

    ++it;
  }

  // Declare the type for the itk::UnsharpMaskImageFilter
  using UnsharpMaskImageFilterFilterType = itk::UnsharpMaskImageFilter<InputImageType>;

  using GradientImageType = UnsharpMaskImageFilterFilterType::OutputImageType;

  // Create the filter
  auto filter = UnsharpMaskImageFilterFilterType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(filter, UnsharpMaskImageFilter, ImageToImageFilter);

  itk::SimpleFilterWatcher watchit(filter);

  // Connect the input images
  filter->SetInput(inputImage);


  UnsharpMaskImageFilterFilterType::InternalPrecisionType threshold = -0.1;
  filter->SetThreshold(threshold);

  ITK_TRY_EXPECT_EXCEPTION(filter->Update());


  // Set the filter properties
  UnsharpMaskImageFilterFilterType::SigmaArrayType::ValueType sigma = 2.5;
  filter->SetSigma(sigma);

  UnsharpMaskImageFilterFilterType::SigmaArrayType sigmas = filter->GetSigmas();

  double tolerance = 10e-6;
  for (unsigned int i = 0; i < sigmas.Size(); ++i)
  {
    UnsharpMaskImageFilterFilterType::SigmaArrayType::ValueType sigma2 = sigmas[i];
    if (!itk::Math::FloatAlmostEqual(sigma, sigma2, 10, tolerance))
    {
      std::cerr.precision(static_cast<int>(itk::Math::abs(std::log10(tolerance))));
      std::cerr << "Test FAILED! ";
      std::cerr << "Error in the Sigma values" << std::endl;
      std::cerr << "Expected " << sigma << " but got " << sigma2;
      std::cerr << " along the [" << i << "]-th dimension." << std::endl;
      return EXIT_FAILURE;
    }
  }

  UnsharpMaskImageFilterFilterType::InternalPrecisionType amount = 0.8;
  filter->SetAmount(amount);
  ITK_TEST_SET_GET_VALUE(amount, filter->GetAmount());

  threshold = 0.01;
  filter->SetThreshold(threshold);
  ITK_TEST_SET_GET_VALUE(threshold, filter->GetThreshold());

  const bool clamp = std::is_integral_v<UnsharpMaskImageFilterFilterType::OutputPixelType>;
  filter->SetClamp(clamp);
  ITK_TEST_SET_GET_VALUE(clamp, filter->GetClamp());

  if (clamp)
  {
    filter->ClampOn();
    ITK_TEST_SET_GET_VALUE(true, filter->GetClamp());
  }
  else
  {
    filter->ClampOff();
    ITK_TEST_SET_GET_VALUE(false, filter->GetClamp());
  }

  // Execute the filter
  ITK_TRY_EXPECT_NO_EXCEPTION(filter->Update());

  // Get the Smart Pointer to the Filter Output
  // It is important to do it AFTER the filter is Updated
  // Because the object connected to the output may be changed
  // by another during GenerateData() call
  GradientImageType::Pointer outputImage = filter->GetOutput();

  // check that output is correct near the step
  start[0] = 9;
  float mins[4] = { -0.21f, -0.33f, 1.32f, 1.20f };
  float maxs[4] = { -0.20f, -0.32f, 1.33f, 1.21f };
  for (unsigned int i = 0; i < 4; ++i)
  {
    if (outputImage->GetPixel(start) < mins[i] || outputImage->GetPixel(start) > maxs[i])
    {
      std::cerr << "Test FAILED! Unexpected value: ";
      std::cerr << outputImage->GetPixel(start) << std::endl;
      std::cerr << "Expected value between " << mins[i];
      std::cerr << " and " << maxs[i] << std::endl;
      return EXIT_FAILURE;
    }
    ++start[0];
  }

  // All objects should be automatically destroyed at this point
  std::cout << std::endl << "Test PASSED ! " << std::endl;
  return EXIT_SUCCESS;
}